

如何使用 RAK 831 Lora 网关和 RPi3

关于这个项目

这个项目包含所有让 RAK 831 Lora 网关模块运行并以 wifi 作为回程的步骤。

- 通用输入输出
- GPS
- lora
- spi
- 无线网

项目信息

类型 已提供完整说明 难度

中等

评估时间
3个小时
P出版时间
2017年7月15
项目使用物品

硬件组件

RakWireless RAK 831 Lora 模块	\times 1	
Raspberry Pi 3 模型 B	\times 1	
跳线 (通用)	\times 1	
RakWireless RAK 811 Lora 节点	\times 1	
FT2232H USB SPI 模块	\times 1	
线路板 (通用)	\times 1	

软件应用程序和在线服务:

https://www.thethingsnetwork.org/

手工工具和制造机器:

来历

介绍

本步骤指南是针对那些想使用 RAK Wireless 上的 RAK831 Lora 射频前端模块来开发他们自己的 lora 网关的开发者。本指南须具有基本的 Raspberry pi eco 系统、硬件和相关的 Debian 操作系统知识,此外还须具有基本的 GPIO 和 Raspberry Pi 外围设备知识。本指南现展开如下:

什么是 LoRA?

LoRa Alliance[™]技术。LoRaWAN[™]是一个用于在一个地区,国家或全球网络中无线 电池可操作设备的低功率的广域网(Ipwan)规范。lorawan 指向物联网关键需求, 如安全的双向通信,移动定位服务等。

courtesy Semtech

上面的图显示了 Lora 无线架构的各个部分。一些重要的部分在下面简要地解释:

LoRa 技术和 LoRaWAN 协议的关键特征 地理定位:提供免费 GPS,低功率跟踪应用

低成本:降低成本的三种方式:基础设施投资,运营费用和终端节点传感器

标准化:采用改进的全球互操作性速度并推出基于 LoRaWAN 网络和物联网的应用

低功耗:专为低功耗长达 20 年寿命的电池设计的协议

长距离:单基站可在密集的城市/室内地区深穿透,并可连接到 30 英里以外的农村地区。

安全:嵌入式端到端 AES128 加密

高容量:每个基站支持数以百万计的讯息,是用于服务大客户量的理想公共网络运营商。

RAK 831 是一个 LorA 射频前端;例如,它作为一个传入 lora 数据信息包接收器并转发所接收到的 lora 数据信息包到聚合管理软件/硬件主机中。它也可以基于主机板的要求发射 LoRA 数据包。在我们的例子中,Raspberry Pi 3 是控制 RAK 831 前段的主板机。

选择回程

什么是回程?回程是指 Raspberry Pi 如何连接到互联网。本指南重点介绍使用 WiFi 作为回程,但你也可以使用以太网或 3G/4G。如果你在网关附近有以太网可 供使用,那么相比 WiFi 或 3G/4G 最好用以太网。这是因为在外壳内存在额外的 无线电信号会引起噪音。改软件可以处理噪音情况,所以这并不是一个严重问题, 但噪音越小越好。您可以将此选项与以太网上的电源相结合,以最小化一直到网 关的布线。

另一方面,如果你选择 WiFi 代替以太网,然后尝试使用外部天线适配器并移动 天线至外壳外以让盒内噪音更小。

设置硬件:

在连接并打开前,我们让 raspberry pi 和 RAK 831 模块完成以下设置。

RASPBERRY PI

准备 raspberry pi 3 主板和一个准备好 Raspbian 软件的 8GB Micro SD 卡。你甚至可以用预装软件购买一个菜鸟 SD 卡。关于如何在 SD 卡上显示操作系统,请按照说明操作。

请参考:https://www.raspberrypi.org/learning/hardware-guide/

连接 raspberry pi 到 5v 2amps 的电源。这非常重要。Lora 模块在激活无线信号交换时电流峰值达到 700 mA,因此需要有一个良好的电源模块给 raspberry pi 供电。

raspberry pi v3

RAK 831:

有必要在供电主板之前把你的工具箱里的天线连接到天线螺丝终端。

Raspberry Pi v3, RAK 831 module and a Lora Node

连接细节:

这是一个显示如何连接 rak831 模块与 Raspberry Pi 的图表:

RAK 831 Pin	Description on silk screen	<u>RPi</u> physical pin
1	+5V	2
3	GND	6
19	RST (Resent pin)	22
18	SCK (SPI Clock)	23
17	MISO	21
16	MOSI	19
15	CSN (Chip Select)	24

rpi v3 to rak 831 pin connection

The rak 831 silk screen map to the rak 831 pins.

了解 Raspberry Pi 管脚布局前往: https://www.raspberrypi.org/documentation/usage/gpio/ 了解详情

注:

- 复位管脚可以连接到 Raspberry Pi 3 上的任何 GPIO。
- 有必要确保你正确的连接电源管脚以避免伤害到 RAK 831 主板。

启用 SPI: 默认情况下, SPI 外设没有打开。要启用它,请执行以下操作。

- 运行 sudo raspi-config.
- 使用向下箭头选择高级选项
- 箭头指向 A6 SPI
- 当问你开启 SPI 时选择 Yes
- 当它询问自动加载内核模块时同样选择 yes。
- 使用右箭头选择(完成)按钮。
- 当它要求重启时选择 Yes。

A1 Overscan		You may need to configure oversca
A2 Hostname		Set the visible name for this Pi
A3 Memory Spli	t	Change the amount of memory made
A4 SSH		Enable/Disable remote command lin
A5 Device Tree		Enable/Disable the use of Device
A6 SPI		Enable/Disable automatic loading
A7 12C		Enable/Disable automatic loading
A8 Serial		Enable/Disable shell and kernel m
A9 Audio		Force audio out through HDMI or 3
AA GL Driver		Enable/Disable experimental deskt
	<select></select>	<back></back>

Raspi-config for SPI

系统将重新启动。当它返回时,登录并输入以下命令

> s	/dev/*spi*
Pi	回应为

/dev/spidev0.0 /dev/spidev0.1

这代表芯片上的 SPI 设备分别各自启用管脚 0 和 1.这些管脚在 Pi 内是硬连线的。 通常,这意味着接口最多支持两个外设,但也有一些情况下,多个设备可以菊花 链,共享一个芯片使能信号。

向主板供电:

与任何无线项目一样,它们往往需要比主机板通过电源管脚提供更多的功率。下面的两个方案将向你说明如何供电 RAK 831 和 raspberry pi 3.

软件安装:

在 Raspberry pi 让我们采取以下步骤获得必要的软件安装:

• 启用 SPI:

使用 raspi-config 工具启用 SPI([5]接口选项-> P4 SPI) 并同样扩展文件系统([7]高 级选项-> A1 扩张文件系统):

\$ sudo raspi-config

• 确保 Git 已安装

Sudo apt-get updateSudo apt-get upgradeSudo apt-get install git

- 在 raspberry pi 管理您的无线连接
- 配置 WiFi 凭证(检查这里更多细节)

\$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

在文件的末尾添加下面的区块,更换 SSID 和密码以匹配你的网络:

network={ssid="The_SSID_of_your_wifi"psk="Your_wifi_password"}

• 克隆安装程序,开始安装

\$ git clone -b spi https://github.com/ttn-zh/ic880a-gateway.git ~/ic880a-gateway\$ cd ~/ic880a-gatew ay\$ sudo ./install.sh spi

- 该安装步骤会问你是否要启用远程配置。键入Y或"是"并继续安装。在命令行安装开始,脚本将显示你的网关 eui,这对下一步非常重要。记下来!
- 如果需要使用远程配置选项,请确保您在网关远程配置 库:https://github.com/ttn-zh/gateway-remote-config 已经创建了一个名为 JSON 的文件作为你的网关 EUI(e.g. B827EBFFFE7B80CD.json)。Fork the repo,通过适当配置添加你的<EUI>.json文件,接着调用 forked repo。一旦完成,发送一个 pull 请求到主 repo, 第二天文件会出现在 repo 中。下面显示一个 JSON 示例:

{		"gateway_ID": "the id as you noted down in	the install.sh	
console output",	"servers": [{		"server_ada
ude": the long of the rak 831 ga	teway,	"ref_altitude": 40,	"contact_em	
ail": "contact email of the gatewa	y owner",	"description": "a short desciption"	}}	

备注:

点击链接查看有效路由器清单

点击: https://www.thethingsnetwork.org/wiki/Backend/Connect/Gateway

- 默认情况下,安装程序会改变你的 Raspeberry Pi 的主机名为 ttn-gateway(防止和网 络中的其他 Raspberry Pis 冲突)。你可以在非远程配置模式中撤销该操作。
- 如果一切正常的话你的网关就此完成。次日记得重启网关以确保你的 json 文件准确 下载到 RPi3 中。

重置主板:

每次我们开启 raspberry pi 时,最好都要重置相连的 RAK831 lora 模块。这里有两种方式完成此操作:

• 通过外壳脚本:

在 LoRa 驱动程序访问硬件之前可以通过编写一个小的脚本重置 RAK831。此外壳脚本的内容可参见下例(假定 Raspberry Pi 的 GPIO 17(管脚 11)连接在 rak831 复位管脚上):

#!/bin/bash echo "17" > /sys/class/gpio/export echo "out" > /sys/class/gpio/gpio17/direction echo "1" > / sys/class/gpio/gpio17/value sleep 5 echo "0" > /sys/class/gpio/gpio17/value sleep 1 echo "0" > /sys/class/ gpio/gpio17/value

这几行内容可以存储在一个为"rak831_reset.sh"的文件中。每次启动后,用户必须调用此脚本,以便使集中器 IC 处于一个干净状态。

• 通过布线 PI:

如果主机系统是一个 Raspberry Pi,用户可以写一个小的 C-Tool 重置 rak831 设置。 为了访问 Raspberry Pi 的 GPIO 的管脚,这儿有一个为"wiringPi"的文库可以照顾 到低级别详情。该文库可以从 http://wiringpi.com 这里下载。请参阅本网站以获 取安装和使用说明。此 RAK831_reset.c 文件的内容可参见下方:

#include <wiringPi.h> #include <unistd.h> #define GPIO_RESET_PIN 0 // see wiringPi mapping! int main() { wiringPiSetup(); pinMode(GPIO_RESET_PIN, OUTPUT); digitalWrite(GPIO_RESET_PIN, HIGH); sleep(5); di gitalWrite(GPIO_RESET_PIN, LOW); return; }

每次启动后,用户必须调用此工具,以便使集中器 IC 处于一个干净状态。

gcc -Wall -o blink blink.c -lwiringPi sudo ./blink

登陆该网关到 TTn 网络:

为使你的节点发送数据到云,TheThingsNetwork 提供一个云服务来解析和存储 lora 节点通过 lora 网关发送的数据。你需要通过 thethingsnetwork.org 注册您自 己并按照说明注册你的网关:

https://www.thethingsnetwork.org/docs/gateways/registration.html

🜌 The Things Network Console 🔒 < H 🗏 C 🏠 👔 console.thethingsnetwork.org/gateways/eui-7276fffffe010398 💌 🛛 🔍 Search Go THE THINGS CONSOLE Applications Gateways eqourlao ± Gateways > 🚫 eui-7276ffffe010398 0 GATEWAY OVERVIEW O settings Gateway ID eui-7276fffffe010398 Description Kerlink V2 Owner 🐊 Status . connected What is this? Frequency Plan Europe 868MHz Router ttn-router-eu

一旦网关注册完成,您就会看到网关控制台页面如下:

courtesy TheThingsNetwork.org

前

Gateway Key 🔗

Last Seen 19 seconds ago

GATEWAY TRAFFIC uplink downlink join 0 bytes X II pause II time frequency mod. CR data rate airtime (ms) cnt 14:37:11 867.1 lora 4/5 SE7 BW 125 51.5 19253 devaddr: 26.01.2B F7 ps	Gatewa	ays⇒	🚫 eui-7	276fffffe01	0398	Traffi	ic beta							
time frequency mod. CR data rate airtime (ms) cnt	GA	uplink	downlink	c join				0 bytes	<			II pa	use	🗊 <u>clea</u> r
		time 14:37:	:11	requency 867.1	mod. Iora	CR 4/5	data rate SF 7 BW 125	airtime (m	15) .5 19	cnt 9253	dev addr:	26 01 2	B F7	payloa
▲ 14:36:49 868.1 lora 4/5 SF 7 BW 125 51.5 19252 dev addr: 26 01 2B F7 pa		14:36	49	868.1	lora	4/5	SF 7 BW 125	51	.5 1'	9252	dev addr:	26 01 2	B F7	payloa

courtesy TheThingsNetwork.org

排除网关故障:

如果你没有看到 RAK 831 的 RX 光变红,请检查如下情况:

确保你的<EUI>.json 文件在 github repo 中被调用 https://github.com/ttn-zh/gateway-remote-config

如果输入以下命令

sudo tail /var/log/syslog -- 当处于在线状态,你将从 TTN-Gateway 看到消息(可

能需要越过最后几行看)。

确认连接好,Rak 831 电源的 LED 灯是亮红色的。<DIG>

在 TTN 网站的 UI 页面上确保网关是连接的:

更多高级故障排除

访问:https://www.thethingsnetwork.org/docs/gateways/troubleshooting/

检查到 TTN 的连接

检查网关是否工作的最好方法是在 TTN 控制台上注册。

- 登陆到 thethingsnetwork.org 控制台
- 点击网关 -> 注册网关
- 选择分组转发协议
- 输入你的网关 EUI (如果是在安装程序开始和结束时打印)
- 进行描述
- 选择欧洲 868mhz 作为频率计划或者是一个基于国家的适用方案
- 根据你的计划选择正确的天线放置位置
- 确认点击注册网关

现在你可以看到网关的状态(如果操作正确此刻应该是连接状态)和通信量!

这就是你的 lora 网关运行起来的状态。接下来我们将指导如何连接一个 LORA 节 点到这个网关。

原理图

RAK 831 和 Raspberry Pi 管脚连接

Download

RAK 831 Pin	Description on silk screen	RPi physical pin
1	+5V	2
3	GND	6
19	RST (Resent pin)	22
18	SCK (SPI Clock)	23
17	MISO	21
16	MOSI	19
15	CSN (Chip Select)	24