T SV+UVM # % SOC/ASIC %iEF &

UVM-1.1 34t 7 —> UBUS HIB5, (HZAZH 70 T WIRIATT AR 68 2 75 2 — g i
A AR, ASO B 74T — 2 — D fade, wT LA BB

[1-1] WT)RFHE UVM 4 (1) -Basic

1. ~FERLERTHMRIGE, BT 6 AR, Kz & R i) 8, i R #
#—A component #3552 1, WA KIS A AURE I, B ARG R T —2 — 21
Wik P& &5 —ul bl pass MIEAT &, REEAWPYT RIZTFE, REESD
component F I FT 75 ZL [function Bi3 task. 498, X BEFEHEE, AR
AN 6 H T component — IR PEFEE TERL, SR PHIAIFU8 10 75 ZE 01 function B task RfI
CIS

2. EHM UVMF &, —A interface, —4> DUT, —4 TOP, —“test, —~ ENV il
ATLLTAE T, SRJE 1812 FA NS component;

3. 5 interface

4. 5 top module, 7E top H44t DUT, interface 1 DUT 7E top H include

ne UBUS_ADDR_WIDTH 16

"dut_dummy .v*"
. wybus_if.swv®

6 module bus_tb top;

import uvm_pkg::*;

virtual ubus_if) ::se

uvm_config_db#(virtual ubus_if)::set(uvm_root::get(), "*", "vif", vif);

run_test();
5. 5 Makefile, LT gmPEn] DL
all: clean run
run:
irun -access rw -uvmhome ${UVM_HOME} +UVM_VERBOSITY=${UVM_VERBOSITY} -quiet +define
+UVM_OBJECT_MUST_HAVE_CONSTRUCTOR -incdir . ubus_tb_top.sv

clean:
rm -rf *~ core csrc simv* vc_hdrs.h ucli.key *.log

6. 5 HE X package, FRJETE top ' include % package

lude "uv | os.svh"

uvm_config irtual
virtfal ubus '

typedef uvm_config_db#(virtual ubus_if) ubus_vif_config;
typedef virtual ubus_if ubus_vif;
JERAER, XPH)TEFE ubus K env PIRARA A E;
7. € X Environment, F¥ZCAFIIAE]H E LK) package WY, 1K g g PR AN BRI

onent parent

uvm_phase phase) ;

n_ £ D 5 1 ubus_if) ::get (this

uvm_fatal ("NO vif", {"virtual interface must b set for:",g full_name(), "

ifunction

AL get AT top H) set 2 —XF, IR top FEF set W » uvm_fatal F 4R
if(luvm_config_db#(virtual ubus_if)::get(this, "", "vif", vif))
‘uvm_fatal("NOVIF",{"virtual interface must be set for:

",get_full name(),".vif"});
1 ¢ k ukbk

) (virtual ubus_1f ubus_vif_config;
virtual ul s if ubus_vif:;
lude "ul

endpack

8. & X base test, 75 4:{E top " include 1% test X4, FF7E makefile H A 9w 1% test [
4 SRR DL B iEad, FFIZ AT & basic [1] testcase

r printer;

ing name="ubus_base_test",uvm_component parent=null) ;
me, parent) ;

lef 1ine UBUS_ADDR__
"i1nclude "dut_dummy .V
1nclude "ubus_1f.sv
"1nclude "ubus_pkg.sw
module ubus_tb top;

import uvm_pkg::*;
import ubus_pkg::*;
"i1nclude "test_ _lib.swvW®

ubus 1f

dut_dummy dut |

Gr B — B

BE—: E—NMERFNRAEFEd, B8 — R basic] base_test, {ERFREEMNA
FFRIIAE R E D RA—FEH, HMRERERIE USB, K —E 2 M base_test FIRE—A
usb_base_test R4 H L, XFER T LLTE usb_base_test I AEFRABER F, MAXRE
me) 2 HoAth A o

BEE T TN test HAEIESHZE] top_tb, W1 A uvm_config_db 7E base_test H1i B2
Bi{E, IBAXEAELE environment/agent/dirver £ a] L) get 3], {ER7E top_tb
ge get Fi)? KA THEK T XA B

uvim_config_db #(int)::set(null,"uvm_test_top","set_usb_single_test",1);

BE= BEEENLE, REHE X interface 134 include 7E package ', X453
GREAIL .

MZ500: uvm_report_info 1 uvm_info 7E VA& A X HIHI, #RZAHRITEHEER .

[1-2] GRS UVM 74 (2) -MasterAgent

7€ X sequence item, VEE, — PR transaction 75 E X N —4 driver;

‘uvm_object_utils_begin(ubus_transfer)

‘uvm_field_int (addr, UVM_DEFAULT)

‘uvm_field_enum (ubus_read_write_enum, read_write, UVM_DEFAULT)
‘uvm_field_int (size, UVM_DEFAULT)
‘uvm_field_array_int(data, UVM_DEFAULT)
‘uvm_field_array_int(wait_state, UVM_DEFAULT)

‘uvm_field_int (error_pos, UVM_DEFAULT)

‘uvm_field_int (transmit_delay, UVM_DEFAULT)

‘uvmn_field_string (master, UVM_DEFAULT|UVM_NOCOMPARE)
‘uvm_field_string (slave, UVM_DEFAULT|UVM_NOCOMPARE)

‘uvm_object_utils_end

enum {NOF, ; W g vr1te_enum;

tring (m
ring (s
s_end

ing name="ubus_

endfur
:la

2L BB WP L N 5 75 BEAE transaction HE L ?
10. € X Uf T transaction, 7] LAFF46 %€ X base sequence [; VEE, fE base sequence [
pre_body #1 post_body 1 3& ¥ raise_objection 1 drop_objection &R A 4 4L H]; # base
sequence JE UM MEFEL, RAIREEA BEREAT SLI1L

| MEDIUM
thi

virtual

uvm

12. F T sequence, Ht1%'5 sequencer |5 sequencer A HEAN BRI oA] 5 (13040 5
ubus_master_se nce S uvIn_sequencel

vin_component_ut s r_s encer)

pare

13. F 1 sequencer, HLAJLLE X driver |, & XUf driver, $RJ5 7 ZAE agent 1 HEATHIAL
{E driver H— € % get interface, [FA driver EL#% A1 DUT (32 H ;

",get_full n

15. f T sequencer, driver, SEFR_F&ATLAE S master agent |, 7E agent HHESZI dirver Fl
sequencer FfJIZEHE

er_agent e €
nt master_id;

master_id
nd

16. Agent LI T 2)5, BT EAE env 440

nent_utils

ring name 1 omponent parent

name, par

nf ig_db#

rm_fatal ("NO vif", {"vi é iterface 8 for: € full_name

void' (uvm_config_db# ::get R i | ers",num _master:

bus_master_agent:: 1 reate (1nst_;

ib# (1nt) : st_name, ".dri "master_id", i

17. SRJE R L test_lib.sv, 5 —"MM base_test JRAEH R test, B BRI sequence. Fll master
K

cl test_.

t=null) ;
endf

virtual function void build phase

18. #RJSTE ubus pkg.sv H include %4~ component S, SR/G9mTE, 1B00—LiB R4 1%,

A —HaHILW T4 %: make test_read_byte
irun -access rw -uvmhome /home/dengf/uvm-1.1 +UVH VERBOSITY=UVM LOW -quiet +define+UVM OBJECT
MUST HAVE CONSTRUCTOR -incdir . ubus tb top.sv +UVM TESTNAME=test read byte

uvm_config db#(uvm _object wrapper)::set(this,"env.masters[0].sequencer.run_phase"
"default_sequence", read byte seq::type id::get());

|
ncvlog: *E,NOPBIND (test_lib.sv,36|125): Package read_byte_seq could not be bound.
uvm_config_db#(uvm_object_wrapper)::set(this, "env.masters[0].sequencer.run_phase"
"default_sequence", read_byte_seq::type_id::get());

|
ncvlog: *E,NOTFXX (test lib.sv,36[139): Expecting a function name [10.3.3(IEEE)].
irun: *E,VLGERR: An error occurred during parsing. Review the log file for errors with the co
de *E and fix those identified problems to proceed. Exiting with code (status 1).
{make: *** [read_byte] Error 1

19. HiRMEEZBIX S sequence NEET get B, 1E B i 15 B ERIA M sequence J5, 4miF
AT LIERR BT, HAE R P & G BER s, 72 debug;

e extends ubus

t parent=null) ;

virtual function void build_phase (uvm_phase phase) ;

j_db# (int) : : se this, "env", "num_masters",]l
Ib#t (uwvm_c t

20. FTHF EMRIBE#L, 2 read byte seq 12, ¥ task body()5# M th A LA pass

t_full_namef(),"

BEg. aad:

Feg.read_write
req.si L

FEg.error_pos
FEg.transmit .

: $sformtf (»

21. FHAETNIE, ZFEHH ENV, agent, driver, sequencer, sequence, transaction I,
] DL AT B A test #:1E 1, {H 218 75 % monitor, scoreboard 5555 ;

MgE—. driver (sequencer /&) &M KIEN sequence RAEH KA, WL —A driver
BLRIEN sequence MIRALZ[E EIE T 1), HAFRATTH LW Z FEMM sequence 1
A driver SREIEBEE 4 I? HIE LT KT sequence A ELAHL sequence, il
% uvm_object, #RJG7E—AKH uvm_object ' random X 26/NF uvm object (Hit &
/N sequence), FRJE FHIX AN KT uvm_object SRl sequence_item BiXT T o

B4 sequence item L AGHIREE ARG 7 S) U2 AR 2 HT module FIT LA 2 i
H data flow [R5 #E 7.

Mg = JIISICTE driver 1 get interface.

[1-3] WfAIRFHE UVM & (3) -Master Monitor

22. %%’5 master_monitor; 1% component [3= EAE F A W EE driver & H ¥ 2% Fh B 8 28 2 1)
coverage. SRJ5 7 ZA1E agent H 4K,

ring name, uvm_component

ame ({get_full_ name

ubus_if
virtual

ring name, uvm_component

ubus_if
virtual I rfac mus + E : ",get_full_name

24. F|HATHNIE, “FEBES), {HEAKA sequence & RN, FrCAN A 2K AR T2
76 H AT ELA IR N R IZ /N A 23X /2 KN 7E sequence H & A FTH uvm_do *AH 11
BREG FTF R BTG 3h T, HEEIEA TR, FEHE—F debug

__full name

[Iy

10

26. £ top FXNZAE SHATHS G, % SR ASEIE T

I 0
7:UJLJLUJLJLUJLJLUULJLUULJLUULJLUU

1 0 :;\-l\.-l%\:li\.‘\-kl.-\l
S Wil Wikl Wl Wit Wl Wkl Wil Wikl Wl Wl

[1-4] {T)FFHS UVM T4 (4-1) -Slave Agent

27. USSR %P 6 BRI TR, RAMHRZEAFE2f 83k 7, (HRERRE
EXCEZ AR, L@ 2 AT 2 master A1 slave, DMA i 75 2 slave model, DDR
P 23 MR 7 ZE slave model, SPI/UART/IIC/IIS/PCIE %5 #K 75 %2 53 41 model, 5 {ii)
T model AL T 25 R USLIT R, IXFEAE N —FhEAIET7 V25 4 1) 5 b — ANk J7
EF R AT EAE M model, HLANME micron #2 4] DDR model A1 NND model #7257 T
BSUETTIR5 s 2R T ubus AN TCHTIE, IO EEAS DUT ZhH) 2R 78 #B 2 AN [
SE 48R, WEREELL slave [5@ 54T

28. Slave driver (1 H 2 [H] Response, H4 XA response (1] 452 M slave [F) sequencer
K1, T sequencer [item NI 3K B slave sequence lib, Fr A7 E & 45 slave 1)
sequence; slave A Hifl sequence, ZH—FR [EIE S A, 55 —FhoR (A1 kA 45

29. 44%’5 sequence, E package ' include, %1% nl L@ ;

bus_transfer) ;

2ct_utils (simple
ubus_transfer util_transfer;

virtual t

fsformatf("%s starting...",get seguence_path()), UVM _MEDIUM) ;

30. #i’5 slave sequencer, fE package ' include, J¥&E, HEAHITHILE, miknl LuEt

11

endc

31. %45 slave agent, J£1E slave agent H#1{k sequencer, 7E package H include, VE&E, Jf
A H T B IXAS agent, ik AT LLdERE

uencer", this) ;

33. HHIILE slave #43, H AT KA agent,sequencer,sequence, H FLUT T 45 1%
UVM_ERROR @ 0:

uvm_test_top.ubus_example tb0.ubus0O.slaves[0].sequencer.addr ph port [Connection Error]
connection count of 0 does not meet required minimum of 1

X AE K ATE sequencer H A B T —AN TLM port, {H & — ELI% A EBE T AT 2 5 ki A
AL

12

uvm test top
ubus_example_tb@
ubus@
masters[0]
driver
rsp port
recording detail
sqr _pull port
recording detail
master id
recording detail
monitor

item collected port

recording detail
master id
checks_enable
coverage enable
recording detail
sequencer
rsp_export
recording detail
seq_item export
recording detail
recording detail
arbitration queue
lock_queue
num last reqs
num last rsps
master id
recording detail

v (ubus_transfer)

- extends uvm_sce

pha

sequencer)

test read byte
ubus_example_tb
ubus_env

ubus master agent
ubus _master driver
uvm analysis port
uvm verbosity

uvm seq item pull port
uvm verbosity
integral

uvm verbosity

ubus master monitor
uvm analysis port
uvm_verbosity
integral

integral

integral

uvm verbosity
uvm_sequencer

uvm analysis export
uvm verbosity

uvm seq item pull imp
uvm verbosity
uvm_verbosity

array

array

integral

integral

integral

uvm verbosity

13

addr_ph port;

@6593
UVM FULL
@6519
UVM FULL
'ho

UVM FULL
@4974
@5313
UVM_FULL
'ho

'hl

'hl

UVM FULL
@5218
@5476
UVM FULL
@6372
UVM FULL
UVM FULL

'dl
'dl
'ho
UVM FULL

slaves[0] ubus slave agent - @4972
sequencer ubus_slave sequencer - @6364
rsp_export uvm_analysis_export - @6762
recording detail uvm verbosity 32 UVYM FULL
seq_item export uvm seq item pull imp - @7658
recording detail uvm verbosity 32 UVM FULL
recording detail uvm verbosity 32 UVM FULL
arbitration queue array 0 -
lock queue array 0 -
num last reqs integral 32 'dl
num last rsps integral 32 'dl
recording detail uvm verbosity 32 UVM FULL
num_masters integral 32 'hl
num_slaves integral 32 'hl
recording detail uvm verbosity 32 UVM FULL
recording detail uvm verbosity 32 UVM FULL
Name Type Size Value
ubus_transfer inst ubus_transfer - @5284
addr integral 16 "h2c7
read write ubus read write enum 32 READ
size integral 32 "hl
data da(integral) 1 -

[0] integral 8 "ho
wait state da(integral) ¢} -
error_pos integral 32 "ho
transmit_delay integral 32 'ho
master string 10 masters[0]
slave string 0 "
begin time time 64 260
end time time 64 280

[1-5] 4WfTIRFHE UVM & (4-2) -Slave Driver

35. Slave driver FI{FEH 25X master 125 U r) 3R [0 508 5038 Wi B s 249818 ELOK S slave 77
MZIKSI S5, 567 Z315 Virtual interface. 2R J5 3575 slave sequence lib H]
sequence H IR AN F s 28 |

14

36. IR LGX AT IE R SN ? resp R3S R 5 S AFBURRR IS ? Rk, 1X
AL ARG K, 7 ubus_slave req lib.sv H1ff) slave_ memory seq "' [post do pFi %
Al AEF.

virtual
if

37. Slave driver 5585, Bt 7% 21 slave agent #1146 'E , 44 slave driver fl slave sequencer
B OR; 1E package ' include ubus slave driver.sv; BEHT slave FEAN 2 & IEAT] £ dis

15

Hk, BFCABATE test Hi%E default sequence;

u

ub & a ¢
ubus_slave driver

river :Hbus_slave driver:

38. FRATTEEAL slave BIAEK, FUNFRAT case /& e#AE, 4T E slave $RAETHEE, Fr
PAFE224E slave_sequence_lib.sv H1 A —> memory] sequence; fE pre_do H#fEE 52 HL

(IR HE & 4, 1 post_do H¥% 5 N HIEE /7T K s

item th

endfunc

39. 1 task body H¥f sequencer FF] trans peek HidK, ANHIEF A AL, (HREAXAHTH
21 req XZIEIT sequencer KIEZS driver [, 7555 2 [HEA#;

16

h (), UVM_MEDTUM) ;

tion (this) ;

40. BESRE 715 R sequence, HLRT LAF test 1% E slave FIERIA sequence T s
read modify write seq::type id::get());
uvm_config_db#(uvm_object wrapper)::set(this,
"ubus_example_ tb0.ubus0.slaves[0].sequencer.run_phase",
"default_sequence",
slave_memory_seq::type_id::get());
WEJa H I AR
ncvlog: *E,NOIPRT (ubus_slave seq lib.sv,3149): Unrecognized declaration
'ubus_slave sequencer' could be a spelling mistake [System Verilog].
(“define macro: uvm_declare p_sequencer
[/home/dengf/uvm-1.1/src/macros/uvm_sequence defines.svh line 446], ‘include file:

ubus_slave seq_lib.sv line 31, “include file: ubus_pkg.sv line 12, file: ubus_tb_top.sv line 5)

ubus_wvif_config;

endpack

£ package 144 sequencer HIIF % 2 seq lib 1Al I BRI AT
41. 534b seq HH BT sequencer H (1) addr _ph_port, FTUATE L R TIBR T I, I H R E
#32 addr_ph_port A A LLs {EJ& H AT monitor 3B S 4F, At A BE #ck BT A H 211X A~
port (IHLTTIE, BEmG gwEld, H2 IR AR
UVM_INFO @ 0:
uvm_test top.ubus example tb0.ubusO.masters[0].sequencer@@read byte seq

[uvm_test top.ubus example tb0.ubusO.masters[0].sequencer.read byte seq] sequence is okay

17

now,please FIXME.

UVM_INFO @ 150: uvm_test top.ubus example tb0.ubusO.masters[0].driver

[uvm_test top.ubus_example tb0.ubus0O.masters[0].driver] enter get and_drive.

Error! NULL pointer dereference
File: ./ubus_slave seq lib.sv, line = 38, pos = 30
Scope: worklib.ubus_pkg::slave_ memory seq@8242 5.pre_do
Time: 160 NS + 2
I 50 (1) JiR DR 55 A2 7E sequence HI& A port K get B I A 1 sequence, BT AR EE E T 14L —
A, H—> util_transfer ff) new P& ECEIT];

()),UVM_MEDIUM) ;

‘util_ transfer):

jection(this) ;

ion(this);

42. J5IHI, testcase ANRELE I, 1)@ JE K 75 2 debug; A IR K2 7E slave_sequence_lib.sv
W [#) task body H 7 forever begin ... end H Il B T starting phase.raise_objection F/l
starting_phase.drop_objection, #f forever E4sj5, BEIEMMISTH, (HZAHAE slave IEH
TAEG? BASEG 5RO EAE IR ? $H DA

()), UVM_MEDIUM) ;

tion(this);

[1-6] W)RFH'E UVM 74 (4-3) -Slave Monitor

43. M Nuife slave monitor A master monitor —/NMg 2% 1, FRAFIE N4 XN 7
HWAS, BURNEEREREXT coverage AT E s 534h, monitor 1 —1 peek BFRI%L,
XA RERTE seq_lib 1, FHSRAHE monitor W EI trans 2% N2 seq_lib H A7 I, KA
ff)& addr ph_port HE47iE{5

18

collect_transactions () ;

)) » UVM_FULL)

1tput ubus_

SR 5 5 Z%% ubus_slave monitor.sv 7E package ' include, 7 7E agent #1411 slave_monitor,

5 LT IF sequencer 7 Wk Y addr_ph_port, FE7E seq lib.sv K] addr ph port K get
transaction, IfA& H O —A new O FIHIE R EL; B E2K sequencer [1) addr_ph_port
F1 monitor] addr_ph_imp EFEE K ; 4 slave _seq lib 1] slave mem_seq ' [task body
W forever Il L

virtual

on(this) ;

on(this) ;

XN L forever j5 REfF1E, REANTE peek B F &EfF—A event, WMREHEFF

event, ¥/ < raise_objection.

19

. monitor monitor:

ent_utils

3| H 57~ 1E W LLE 3] master_monitor 1 slave_monitor &S &L Pl coverage 41145
RT.

UVM_INFO ubus_master monitor.sv(153) @ 300:
uvm_test_top.ubus_example tb0.ubus0.masters[0].monitor
[uvm_test top.ubus example tb0.ubusO.masters[0].monitor] Covergroup 'cov trans' coverage:
15.000000

UVM_INFO ubus_slave monitor.sv(196) @ 300:
uvm_test top.ubus_example tb0.ubus0.slaves[0].monitor

[uvm_test top.ubus_example tb0.ubus0.slaves[0].monitor] Covergroup 'cov_trans

coverage:15.000000

[1-7] WATRFHE UVM ¥4 (5-1) -Scoreboard
45. F|IHAT NI, M RIEAN) component #A 1, DUT mJLAIEH TAE T, HELTH

—> scoreboard K F|Wr DUT TAE &5 1EMi; % scoreboard M. i% 7 B{—~> TLP imp,
F K421 master_monitor 1 slave_monitor f& it K[collected_trans;

20

uvm_analy

num_in

Num_ Unir

XA write BREUZ uvm_analysis_port W FH ¥, BRIARAEAE write BREL, B DAIXANHLT7 22
TR, BIA S IXA R I i AN A EE 72] LLIE AT 15 uvm_analysis_port FI1E FH &
ik slave monitor F1 i] memory verify BR%L, 7E LA E R UL R transaction A data (A
DUT W E] data) FIAFLET mem () data (XA DUT Z BT f data) #EATHEE; (ER,
master_monitor H [write PR A 2K H scoreboard ! ! 4 3k F W JLIE)

VEER IR 2 I b R AN RE AT

I
id memory eri

ITE) begin

endfunc

46. Scoreboard 55)5, 75 EA{E ubus_example tb HIEATHIALIHIER: TLM ¥ [3 slave, I
E package "' include;

21

scoreboard0;

component parent=null) ;

e ("georebeardl", this) ;

connect (gcoreboardl. iter
[Siatabbial

EL‘S

47. F|H#ETANIE, master, slave, scoreboard Ei4: T ;
STRICAE: uvm_ubus_4.tar.gz

[1-8] AT S UVM ¥4 (5-2) -Bus Monitor

48. Bus Monitor 3= Z R e MBS salve Xf master HEATI N ; 75 ZLAT environment fit 7
#H 24T bus_monitor AL F| T — AMHUBE M AER s 0B AK slave 130 bk 15 B 2 7E
ubus_example_tb H5E K.

49. T SAE bus_monitor HHEHEHINEEE) class;

22

38 class slave_address_map_info extends uvm_object;
M

32 protected int min_addr;

33 protected int max_addr;

34

35 function new{string name = "slave address map_info"};
36 super.new{name} ;

37 endfunction

a8

39 “uun_object_utils begin{slave_address_map_info)
La “uvm_field_int{min_addr, UUM_DEFAULT)

41 “uum_field int{max_addr, UUH_DEFAULT)

42 “uum_object utils_end

43

44 function void set_address_map {int min_addr, int max_addr};

45 this.min_addr = min_addr;

L this.max_addr = max_addr;

W7 endfunction : set_address_map

48

49 4/ get the min addr

58 function bit [15:8] get_min_addr{};
51 return min_addr;

52 endfunction : get_min_addyr

53

5y f/ get the max addr

55 function bit [15:8] get_max_addr{);
Ch return max_addr;

57 endfunction : get_max_addr

58

59 endclass : slave_address_map_info

50. £t ubus_monitor H'H X B L[class #I46%F 5 ; A slave_address_map_info H1 K
TUERAL set_address_ map Kb T BRI HLhE® & ;

/¢ The following property is used to store slave address map
protected slave_address_map_info slave_addr_map[string];

/7 set_slave_configs

function void set_slave configs(string slave_name,

int min_addr, int max_addr)};

slave addr _map[slave name] = new(};

slave addr_map[slave name].set address map{min_addr, max_addr};
endfunction : set slave configs

51. 1t ubus_slave driver 7£3E4T W B [F] (IS {5, ubus_monitor 2> MR #5247 slave [tk 7
(] >R 5 AZ WA slave 7E IR [R5

23

// check_which_slave
function void check which_slave(};
string slave name;
bit slave found;
slave found = 1'b@;
if{slave addr map.first{slave_name})
do begin
if (slave_ addr _map[slave name].get _min_addr{) <= trans collected.addr
&& trans_collected.addr <= slave_addr_map[slave_name].get_max_addr())
begin
trans_collected.slave = slave_name;
slave_found = 1°'b1;
end
if {slave found == 1'b1)
break;
end
while (slave addr_map.next{slave name});
assert(slave found) else begin
“uum_error{get_type_name{),
$sformatf("Master attempted a transfer at illegal address 16'h%8h",
trans_collected.addr})
end
endfunction : check_which_slave

52. Ubus_bus_monitor R /2 H2AL 7 Hubk 23 [A] (1) — L6 pR £, BARK A NS AE ubus_env H1 58
F¥7, A4 ubus_bus_monitor & 7E env HHILIT; 7FEAE env F45]4L ubus_monitor

if(has_bus_monitor == 1) begin

bus_monitor = ubus_bus_monitor::type id::create("bus_monitor", this);

end

/7 set_slave_address_map
function void set slave address mapi{string slave name,
int min_addr, int max_addr);
ubus_slave _monitor tmp_slave _monitor;
if{ bus_monitor *= null)} begin
/4 Set slave address map for bus monitor
bus_monitor.set_slave configs{slave name, min_addr, max_addr};
end
/¢ Set slave address map for slave monitor
$cast(tmp_slave monitor, lookup{{slave name, *.monitor"}});
tmp_slave_monitor.set_addr_range{min_addr, max_addr);
endfunction : set_slave address_map

53. ubus_example_tb K58 slave Hidik i & ;

function void connect phase{uvm _phase phase);
// Connect slave® monitor to scoreboard
ubusB.slaves[8] .monitor.item collected port.connect(
scoreboardB@.item collected export);
endfunction : connect phase

function void end of elaboration_phase{uvm phase phase};
// Set up slave address map for ubus@ {basic default)
ubus@.set_slave_address _map{‘''slaves[8]", @, 16 hfFff);
endfunction : end of elaboration_phase

54. MR EANMTECOA TR, R EAWT E sequence F1 & test_case BRI

24

[1-9] fIFFHE UVM 74 (6) -Sequence

55. Sequence ;& BN FEH MK, A T sequence 4 HEMEH & H B £ 1 testcase: JiT LA
sequence M55 A6 FIBE HLAL R & 7E task body HH#EAT 19, T ~F & 0 FF 46 Fds 1 2 7
sequence] task pre_body Fl task post_body H 17,

31 virtual class ubus_base_sequence extends uum_sequence #{ubus_transfer);
32

33 function new{string name="ubus_hase seq™);

34 Super.newf{name} ;

35 endfunction

36

37 /7 Raise in pre_body so the objection is only raised for root sequences.
a8 // There is no need to raise for sub-sequences since the root sequence
39 /4 will encapsulate the sub-sequence.

ha virtual task pre_body();

1 if {starting phaset*=null) begin

42 “uum_info(get_type_name(),

43 $sformatf("%s pre_body() raising %s objection”,

44 get_sequence_path(},

45 starting_phase.get_name{)), UUM_MEDIUH);

L6 starting phase.raise objection{this};

47 end

48 endtask

49

58 // Drop the objection in the post_body so the objection is removed when
L1 // the root sequence is complete.

52 virtual task post_body{};

53 if {starting_phase?=null) begin

Ly “uum_info{get_type name(),

5o $sformatf("%s post_body() dropping %s objection™,

Y] get_sequence_path(},

57 starting phase._.get _name{)), UUM MEDIUH);

58 starting_phase.drop_objection{this);

5o end

68 endtask

61

62 endclass : ubus base sequence

56. YRAEH B IEA R sequence, X Fh i IE A sequence AN [F IHLAE LI R A —FE, HARKL
PG BN RIRAER 2 XN T get_response 13 Bl a2 A4 2 A4 T 1%
IR RIIWE ? X AN AR 7E master_driver IR ECH AT

.\n", UVM_MEDIUM) ;

25

FiL:]
f1
i2
3
iy
75
b
i
g
0
88
81
82
83
34
8%
86
87
88
89
28
91
92
03
oy
95
26

57.

58.

class read_byte_seq extends ubus_base_sequence;

function new({string name="read_byte seq");
super.new{name} ;
endfunction

“uvm_object utils(read byte seq)

rand bit [15:8] start_addr;
rand int unsigned transmit_del = @;
constraint transmit_del ct { {transmit_del <= 18); }

virtual task body();
“uum_do_withi{req,
{ req.addr == start_addr;
req.read write == READ;
req.size == 1;
req.error_pos == 18088;
req.transmit_delay == transmit_del; } n
get_response(rsp);
“uvm_info{get_type name{},
$sformatf("%s read : addr = “x%8h, data[®8] = “=%6h",
get_sequence_path{), rsp.addr, rsp.data[e]},
UUM_HIGH);
endtask

endclass : read_byte_seq

£ sequence H{ H uvm_do* I, ERINIFIL) sequence) name 4 req, XA req
AR LA uvm_do* Z AT A1), {H 2R ERIEIX A req LIS, RAEZE driver il
FTED, BN uvm_do*H @& — RANERAE, RAEF] driver Wi 58 UE A 2 #5647
‘uvm_do* J5 [I FE T 5

U Aa] F 7 B 1 sequence 41 & H 2 24 Y sequence WE ? uvm_do R4 % W LAE B — A
sequence [EAE NSH: THHZY 2 1> read_byte_seq Hl—> write_byte_seq 175
I LA E I 3-5 -5 sequences I X Ji 2 A] DAEAT B 1R VE N SE AR BRAE .

26

class read_modify write_seq extends ubus_base_sequence;

function new(string name="read modify write seq"};
super.new{namej ;
endfunction : new

“uum_object_utils({read_modify_write_seq)

read_byte_seq read_byte_seq8;
write byte seq write byte seq8;

rand bit [15:8] addr_check;
bit [7:8] m_data® check;

virtual task body(};
“uum_info{get_type_name{),
Ssformatf("%s starting...",
get_sequence_path{}), UUH_HMEDIUM};
/7 READ A RANDOM LOCATION
“uum_do_with({read byte seqB, {read byte seqB.transmit_del == @; %)
addr_check = read_byte_seq8.rsp.addr;
m_datad check = read byte_seqB.rsp.data[a] + 1;
/4 WRITE MODIFIED READ DATA
“uum_do_with{write_byte_seq®,
{ write_byte_seqB.start_addr == addr_check;
write byte seq@.datad == m _data@ check; })}
/7 READ MODIFIED WRITE DATA
“uum_do_with({read byte seqs,
{ read_byte_seqB.start_addvr == addr_check; })
assert{m _datad check == read_byte_seqB.rsp.data[8]) else
“uum_error(get_type_name(),
$sformatf("%s Read Hodify Write Read errorty\n\tADDR: %h, EXP: %h, ACT: %h",
get_sequence_path{),addr_check,m _datad_check,read_byte_seqB.rsp.data[8])):
endtask : body

endclass : read modify write seq

[1-10] WFBF KIS UVM & (7) -ubus_example_tb

FANNIZA example_tb FEARIM 4 0B, SEFEIRATER] A FH X A2 7T DU — D)%
1B, B AXAEAE R e ? A XA Ik ELHEEAE test H 514K ENV I scoreboard Rl H],
HIXANG, 1E test 1 ELFAF 1L example_tb BIAJ, HFIX 4> example_tb 2272 T | integrate
R4 FH EL

MU TI5 tbl A 4 4> master 4 /> slave

tb2 A5 — master 2 4> slave

XEEHR AR H AR

MR ASFE pattern

WIFF AR I %, R4 master, %4 monitor A slave Fl scoreboard;

27

class ub

t_util

"num ma

,this

ample tb0

ull);

ample tbO0.uk

28

UVM INFO @ O: reporter [UVMTOP] UVM testbench topology:

Name Type Size Value
uvm test top test read byte - @235
ubus example tbo ubus _example tb - @4844
ubuso® ubus_env - @4843
num _masters integral 32 'ho
num slaves integral 32 'ho

recording detail uvm verbosity 32 UVM FULL
recording detail uvm verbosity 32 UVM FULL

[1-11] WfRFFIE UVM & (8) -FERES

[1-12] WTHFHE UVM “F & (8-1) -top.sv

1. N % include DUT, Interface, ubus_pkg; FARJHSTE package ' include
‘include "dut_dummy.v"
‘include "ubus_if.sv"
‘include "ubus_pkg.sv"
2. % import uvm_pkg, MHE LI pke;
import uvm_pkg::*;
import ubus_pkg::*;
FARE ubus_pkg H import | uvm_pkg, {H/Z27EIXANHLITIE A2 import — X, 2 H
PLIT R iR
uvm_config db#(virtual ubus_if)::set(uvm_root::get(),"*","vif",vif);
|
ncvlog: *E,NOPBIND (ubus_tb_top.sv,31|20): Package uvm_config_db could not be bound.

3. WHEBEN, run test
initial begin
uvm_config db#(virtual ubus_if)::set(uvm_root::get(), "*", "vif", vif);
run_test();
end
4. WEPEL
initial begin
$fsdbDumpfile("test.fsdb");
$fsdbDumpvars(0,ubus _tb top);

end

29

[1-13] WAFHE UVM “F & (8-2) -pkg.sv

, B typedef, ARIEHELE get virtual interface AR, HAEAWMBEHERH, Frilstal B
KT, EERE, XA include AHNMUFHI, U #— & AL T .
package ubus_pkg;

import uvm_pkg::*;

‘include "uvm_macros.svh"

/Itypedef uvm_config_db#(virtual ubus_if) ubus_vif config;

/Itypedef virtual ubus_if ubus_vif;

‘include "ubus_transfer.sv"

‘include "ubus_master_seq_lib.sv"

‘include "ubus_master sequencer.sv"

‘include "ubus_master driver.sv"

‘include "ubus_master _monitor.sv"

‘include "ubus_master agent.sv"

‘include "ubus_slave sequencer.sv"

‘include "ubus_slave seq lib.sv"

‘include "ubus_slave driver.sv"

‘include "ubus_slave monitor.sv"

‘include "ubus_slave agent.sv"

‘include "ubus_bus_monitor.sv"

‘include "ubus_env.sv"

‘include "ubus_example scoreboard.sv"

‘include "ubus_example tb.sv"

‘include "test lib.sv"

endpackage

[1-14] WfTFFHS UVM “F & (8-3) -test_lib.sv

T e A base_test, i SCFFPETE[RRIEL
Uvm_table printer printer;
7E build_phase ' new printer 1% & print knobs
Printer=new();
Printer.knobs.depth=3;
7t end of elaboration_phase I EFTENZ i, FIFTEI test topology
// Set verbosity for the bus monitor for this demo

if(ubus_example tb0.ubus0.bus monitor != null)

30

ubus_example_ tb0.ubus0.bus_monitor.set_report_verbosity level(UVM_FULL);
‘uvm_info(get type name(),
$sformatf("Printing the test topology :\n%s", this.sprint(printer)), UVM_LOW)

UVM INFO test lib.sv(25) @ 0: uvm test top [test read byte] Printfing the test topology :

Name Type Size Value
uvm_test top test read byte - @245
ubus_example tbo ubus_example tb - @4915
scoreboardo ubus_example scoreboard - @5023
item collected export uvm_analysis_imp - @5172
disable scoreboard integral 1 "he
num_writes integral 32 'de
num_init reads integral 32 'de
num_uninit reads integral 32 'de
recording detail uvm_verbosity 32 UVM FULL
ubus@ ubus_env - @4914
bus _monitor ubus_bus_monitor - @4985
masters[0] ubus_master_agent - @5250
slaves[0] ubus slave agent - @5024
num masters integral 32 'hl
num slaves integral 32 'hl
has bus monitor integral 1 'hl
intf checks enable integral 1 'hl
intf coverage enable integral 1 'hl
recording detail uvm verbosity 32 UVM FULL
recording_detail uvm_verbosity 32 UVM FULL

F uvm_top.print_topology() & ZUFT EN R R B 4F 5
7. {E run_phase % & drain_time;
task run_phase(uvm_phase phase);
//set a drain-time for the environment if desired
phase.phase done.set drain_time(this, 50);
endtask : run_phase
8. fE extract phase A E test run 58 /5 H 1R A G2
function void extract_phase(uvm_phase phase);
if(ubus_example_tb0.scoreboard0.sbd_error)
test_pass = 1'b0;
endfunction // void
9. {E report phase H1§] E[} PASSED or FAILED f] message;
function void report_phase(uvm_phase phase);
if(test_pass) begin
‘uvm_info(get type name(), "** UVM TEST PASSED **", UVM_NONE)
end
else begin
‘uvm_error(get_type name(), "** UVM TEST FAIL **")
end

endfunction
10. JRAE AR test, ¥ E master Al slave FI4(=

31

uvm_config_db#(int)::set(this,"ubus_example tb0.ubus0",
"num_masters", 2);
uvm_config_db#(int)::set(this,"ubus_example tb0.ubus0",
"num_slaves", 4);
11. % H test [f] default sequence
// Control the number of RMW loops

uvm_config db#(int)::set(this,"ubus_example tb0.ubus0.masters[0].sequencer.loop read mo

dify_write_seq", "itr", 6);

uvm_config db#(int)::set(this,"ubus_example tb0.ubus0.masters[1].sequencer.loop read mo

dify_write_seq", "itr", 8);

// Define the sequences to run in the run phase

uvm_config db#(uvm_object wrapper)::set(this,"*.ubus0.masters[0].sequencer.main_phase"
"default_sequence",
loop_read modify write _seq::type_id::get());
Irmw_seq = loop _read modify write seq::type id::create();
uvm_config db#(uvm_sequence base)::set(this,
"ubus_example tb0.ubusO.masters[1].sequencer.main_phase",
"default_sequence",
Irmw_seq);
for(int 1 =0; 1 < 4; i++) begin
string slname;
$swrite(slname,"ubus_example tb0.ubus0.slaves[%0d].sequencer", i);
uvm_config db#(uvm_object wrapper)::set(this, {slname,".run_phase"},
"default_sequence",
slave_memory_seq::type_id::get());
end
12. f§H sequence MLl 2 5, FEAFK case H1, FEAF [P sequence W E K sequencer 1]
main_phase (— & % s& main_phase "5 ? Nt 4 b1 & B) /& run_phase W6 ?) [
default_sequence, 24 sequencer 47 %/ main_phase i}, &I FH default sequence, HAE
& IX A sequence JH ALK . BT TE test read byte I, 7E main_phase Al 7E
run_phase H' % & default_sequence #B/& IEA 15

32

[1-15] WS UVM 74 (8-4) -transfer.sv

13. Transfer H' F 2 5E L — driver T Z M HHE KA, #B2 M uvm_sequence_item H1 K,
AR SR AN, 8 SO RS, R BRI 2 —) transfer R AEXS
— R driver, HCANUIAICE A A7 A1) APB, & K5 DUT K master, 7525
F transfer, P> driver;
typedef enum { NOP,
READ,
WRITE
} ubus_read write_enum;
14, Z1UE X
constraint ¢ _read write {
read_write inside { READ, WRITE };
}
constraint ¢_size {
size inside {1,2,4,8};
}
constraint ¢ _data wait size {
data.size() == size;
wait_state.size() == size;
}
constraint ¢_transmit_delay {
transmit_delay <= 10 ;
}
15. L) A

‘uvm_object utils begin(ubus_transfer)

‘uvm_field int (addr, UVM_DEFAULT)

‘uvm_field _enum (ubus_read write_enum, read_write, UVM_DEFAULT)
‘uvm_field int (size, UVM_DEFAULT)

‘uvm_field array int(data, UVM_DEFAULT)

‘uvm_field array int(wait_state, UVM_DEFAULT)

‘uvm_field int (error_pos, UVM_DEFAULT)

‘uvm_field int (transmit_delay, UVM_DEFAULT)

‘uvm_field string (master, UVM_DEFAULT|UVM_NOCOMPARE)
‘uvm_field string (slave, UVM_DEFAULT|UVM_NOCOMPARE)

‘uvm_object utils end

33

[1-16] WA/ I'E UVM “F& (8-5) -sequence.sv

16. & X base f] sequence #B /& M uvm sequence IR ZE 1M K, VE &= transfer /& M
uvm_sequence_item JRAETMIOK, X 72 HIX A1), 1M sequence /2 Kt transfer KM ;5
ANERAT1 2% base sequence 75 B A RESETS, WA URAE 5 4 v LAt 47 5244 5

virtual class ubus_base sequence extends uvm_sequence #(ubus_transfer);
17. Sequence 72 il - & B8 s, FEIEAE task pre_body A task post_body 14zl ;
virtual task pre_body();
if (starting_phase!=null) begin
starting_phase.raise_objection(this);
end

endtask

// Drop the objection in the post_body so the objection is removed when
// the root sequence is complete.
virtual task post_body();
if (starting_phase!=null) begin
starting_phase.drop_objection(this);
end
endtask
18. #AJE /2l base sequence SK=A AR IE A sequence; 7EA# H uvm_do* RFZ 1]
g, ERINFILL I sequence 4% 7N req: IXAN req A& AJ LAZE uvm_do* 2 A i ;
‘uvm_do_with(req,
{ req.addr == start_addr;
req.read_write == READ;
req.size == 1;
req.error_pos == 1000;
req.transmit_delay == transmit_del; })

19. FOR BISEA, FPFIT, —Fi& B8R UVM 4L put_response 1 get_respone,
AN — PP ETE sequencer HE X — port 3K H p_sequencer ()73, Ul Py
it:

7 uvm_do 2 J& sequencer FEERFHEUL rsp, IXA rsp A2 IHIT driver K IEITL KA
get_response(rsp);
MELAE driver Hrox B FALAS:
seq_item_port.get next_item(req);
Scast(rsp, req.clone());
rsp.set_id_info(req);

34

drive_transfer(rsp); //HAKH) DUT iX AN 7 SEHAN]
seq_item_port.item_done();
seq_item_port.put response(rsp);
20. 7HHb—#7J7 I ubus_slave seq lib.sv 1 HIHRFE;
B — 5 BAE sequencer HE X —4> TLM port;
class ubus_slave sequencer extends uvm_sequencer #(ubus_transfer);
uvm_blocking peek port#(ubus_transfer) addr_ph_port;
// Provide implementations of virtual methods such as get type name and create
‘uvm_component_utils(ubus_slave sequencer)
function new (string name, uvm_component parent);
super.new(name, parent);
addr_ph_port = new("addr_ph_port", this);
endfunction : new
endclass : ubus_slave sequencer
ER, XTI F] psequencer Al m_sequencer FIAIIN, fRIFAIE, m sequencer 15
1]) uvm_sequencer base M) 5%, p sequencer 45 7] f¥) /& uvm_sequencer base JK 2E Xf %
ubus_slave sequencer HI$a%l; A AFRATE A H ubus_slave sequencer H1 1) port, Ht— 7€ % H
p_sequencer 4 AJ L.
‘uvm_declare p_sequencer(ubus_slave sequencer)
ubus_transfer util transfer;
virtual task body();
Scast(req, create_item(ubus_transfer::get type(), p_sequencer, "req"));
forever
begin
p_sequencer.addr_ph_port.peek(util_transfer);
starting_phase.raise_objection(this);
start_item(req);
finish item(req);
starting_phase.drop_objection(this);
end
endtask : body
peek BRI 24 4R 7 7E T ubus_slave sequencer [component H SZHL, A& A 2 A1
ubus_slave monitor HIE{E), FTLA peek BREE LU T
uvm_blocking_peek imp#(ubus_transfer,ubus_slave monitor) addr_ph_imp;
task peek(output ubus_transfer trans);
(@address_phase grabbed,;

trans = trans_collected;

35

endtask : peek
MHRIE T ELAE slave_agent HBF port 2 [B) 34734 4%
sequencer.addr ph_port.connect(monitor.addr ph_imp);

[1-17] WARFFHS UVM & (8-6) -driver.sv

21. Driver, Monitor, Environment #{ 7 % get interface; virtual interface [15 B)| /& 7E top
th 5E B
function void build_phase(uvm_phase phase);
if(luvm_config_db#(virtual ubus_if)::get(this, "", "vif", vif))
‘uvm_fatal("NOVIF",{"virtual interface must be set for: ",get full name(),".vif"});
endfunction: build_phase
22, SRJEHE M sequencer FHEIN sequence, KIEZE| interface b, T EX] sequence IR [F]1]
N, BUIUE 7, R B RA AT, L sequence.sv
// run phase
virtual task run_phase(uvm_phase phase);
fork
get_and_drive();
reset_signals();
join

endtask : run_phase

// get_and_drive
virtual protected task get and drive();
@(negedge vif.sig_reset);
forever begin
@(posedge vif.sig_clock);
seq_item_port.get next_item(req);
$cast(rsp, req.clone());
rsp.set_id_info(req);
drive_transfer(rsp);
seq_item_port.item_done();
seq_item_port.put_response(rsp);
end
endtask : get and drive
23. R, driver — Mt LAM scoreboard ELFER M TLM %2 1 EL#GEE, K trans KILF]
scoreboard HHAT LLEL, (H/Z1E ubus HATLLER 2%, H T =4 monitor;

36

[1-18] WIHFFHS UVM 74 (8-7) -Monitor.sv

24. [d] driver —#¥, monitor [FJ5F —1} 5 & get interface;
function void build_phase(uvm_phase phase);
super.build_phase(phase);
if(luvm_config_db#(virtual ubus_if)::get(this, "", "vif", vif))
‘uvm_fatal("NOVIF",{"virtual interface must be set for: ",get full name(),".vif"});
endfunction: build_phase
25. SRJEE L—/> TLP %11, HTH1 scoreboard #EATE(S; Flit47 £ L
uvm_analysis_port #(ubus_transfer) item_collected port;
item_collected port.write(trans_collected);
1t ubus_example_tb.sv H':
ubus0.slaves[0].monitor.item_collected port.connect(scoreboard0.item_collected export);
1E scoreboard H SEH write BRI %(; 7E scoreboard H A — > memory # %!, 4 slave_monitor
WAL 280) 5 1R R P A PG OR A7 B0 B R B ST K slave_monitor WO EI R B4R AR H2 AL R H 08
bl 0 B3 00 B8 s i R R [VB slave_seq lib 1) slave_memory seq K 5%
B, TR A X
// write
virtual function void write(ubus_transfer trans);
if(!disable_scoreboard)
memory_verify(trans);
endfunction : write
26. Monitor [1] 73 #h—A~ B BAE L& AT coverage M1 B JBE 2 L% cover point;
// Transfer collected covergroup
covergroup cov_trans;
option.per_instance = 1;
trans_start_addr : coverpoint trans_collected.addr {
option.auto_bin_max = 16; }
trans_dir : coverpoint trans_collected.read write;
trans_size : coverpoint trans_collected.size {
bins sizes[] = {1, 2, 4, 8};
illegal bins invalid_sizes = default; }
trans_addrXdir : cross trans_start_addr, trans_dir;
trans_dirXsize : cross trans_dir, trans_size;
endgroup : cov_trans
27. RJGHLZETIEAT coverage HITHE FIH I ;

// perform_transfer coverage

37

protected function void perform_transfer coverage();
cov_trans.sample();
for (int unsigned i = 0; 1 < trans_collected.size; i++) begin
addr = trans_collected.addr + i;
data = trans_collected.data[i];
//Wait state inforamtion is not currently monitored.
// wait_state = trans_collected.wait_state[i];
cov_trans_beat.sample();
end

endfunction : perform_transfer coverage

task peek(output ubus_transfer trans);
(@address_phase grabbed;
trans = trans_collected;

endtask : peek

virtual function void report_phase(uvm_phase phase);
‘uvm_info(get full name(),$sformatf("Covergroup 'cov_trans' coverage: %21",
cov_trans.get_inst_coverage()),UVM_LOW)
endfunction
28. Ubus_monitor HitH —"MEH, Bt 24T slave M BEAGE ; B AR JLFTTH 1) ubus_monitor
IS

[1-19] WRFFHS UVM 74 (8-8) -Agent.sv

29. Agent i) 15E & B A1 L1, BB 5T sequencer, driver, monitor B FIERE, 71
BIENT A R, BATHE ZHW UVM_ACTIVE & &4 340 B s fE
T BEANTE 75 L sequencer Al driver, 1M A 75 % monitor;

// build_phase
virtual function void build phase(uvm_phase phase);
super.build_phase(phase);
monitor = ubus_slave monitor::type id::create("monitor", this);
if(get_is_active() == UVM_ACTIVE) begin
driver = ubus_slave driver::type id::create("driver", this);
sequencer = ubus_slave sequencer::type id::create("sequencer", this);
end

endfunction : build_phase

38

// connect_phase
function void connect_phase(uvm_phase phase);
if(get_is_active() == UVM_ACTIVE) begin
driver.seq_item_port.connect(sequencer.seq_item_export);
sequencer.addr_ph_port.connect(monitor.addr_ph_imp);
end

endfunction : connect phase

[1-20] W{AFF S UVM “F4& (8-9) -Scoreboard.sv

30. Scoreboard - E WK H monitor HEE, RN &2 IR, R RN <
B — A error 4B 7%, 1E test lib [base test o143 #iX N 7%, 7F base test [F]
report_phase Hflx & FAILED, 5I#k+ PASSED, ZEHfids, & 5LE A TLM port;
W E A write PR

uvm_analysis_imp#(ubus_transfer, ubus_example scoreboard) item_collected export;
//build_phase
function void build_phase(uvm_phase phase);

item_collected _export = new("item_collected export", this);

endfunction

// write
virtual function void write(ubus_transfer trans);
if(!disable_scoreboard)
memory_verify(trans);
endfunction : write
31. Write bR PN &8 — AR 1 EEACRR B, XA P At R B 5 90 B B) e B A 0 AT 1
K2 HI i #R 2> FH B A F 83 memory (77 2RIEAT HLEL

[1-21] WHANRFERE UVM 4 (8-10) -Env.sv

32. Env F A1 57411k master agent, slave agent, monitor;

void'(uvm_config db#(int)::get(this, "", "num_masters", num_masters));

masters = new[num_masters];
for(int i = 0; 1 <num_masters; i++) begin

$sformat(inst_name, "masters[%0d]", 1);

39

masters[i] = ubus_master agent::type id::create(inst_name, this);

void'(uvm_config_db#(int)::set(this, {inst_name,".monitor"},
"master id", 1));

void'(uvm_config_db#(int)::set(this, {inst_name,".driver"},
"master_id", 1));

end
33. IH 2 coverage Fl check MAF B, 4IRTE ubus HIEAH XY slave Hiuhik = 6] (¥ T & BR
B BT slave Hibb S M ECE, JE T4 1145 E 4500

// set_slave address_map
function void set slave address map(string slave name,
int min_addr, int max_addr);
ubus_slave monitor tmp_slave monitor;
if(bus_monitor != null) begin
// Set slave address map for bus monitor
bus_monitor.set slave configs(slave name, min_addr, max addr);
end
// Set slave address map for slave monitor
Scast(tmp_slave monitor, lookup({slave name, ".monitor"}));
tmp_slave monitor.set addr range(min_addr, max_addr);

endfunction : set_slave address map

[1-22] WFFFHS UVM P& (8-11) -example tb.sv

34, WG R — MBI SCAAAAERIAE I, BRIy JATR U EHEAE test HHIML env, RS
FATEL T, R RIS R MR, A RET ER 25, Rl Ext T B X AR T
FRE EEFI AL,] AXT SR U XA A, EE i 3AE—> chip f, T =
HAXT B, 79l 2x4,5%8,3x6, Ay BARAE[F]— 1 & RN A =248 41
174, W4 example_tb §UARA H 7, IR LLEREAE test 14146 =~ example_tb BIF] .

35. Example tb FZH K1 E master IR, slave AR, slave HbE /L, SR BAS
scoreboard 1 monitor [fJiZE4E .

// build_phase

virtual function void build phase(uvm_phase phase);
super.build_phase(phase);
uvm_config db#(int)::set(this,"ubus0","num_masters", 1);

uvm_config_db#(int)::set(this,"ubus0","num_slaves", 1);

40

ubusO =ubus_env::type id::create("ubus0", this);
scoreboard) = ubus_example scoreboard::type id::create("scoreboard(", this);

endfunction : build phase

function void connect_phase(uvm_phase phase);

// Connect slave0 monitor to scoreboard

ubus0.slaves[0].monitor.item_collected port.connect(scoreboard0.item collected export);

endfunction : connect_phase

function void end_of elaboration phase(uvm_phase phase);
// Set up slave address map for ubus0 (basic default)
ubus0.set_slave address map("slaves[0]", 0, 16'hffff);

endfunction : end_of elaboration phase

[1-23] WP HE UVM “FE& (9) -RAL

1. Bl—A> APB i M ZF /74 1 dut AfF, BT APB [1] Agent /£ UVM H1 &84, A
W7 B regmodel FI7E env F1 11k regmodel IAHIE TAESE, {HZ AT Joif & H R
fi# APB agent [1 52 ;

2. Callbacks
{£ APB] driver H17E get trans J& MIHAT 5L 5454 J5 #BAFEAE —) callback 1 H ;

typedef class apb_master;
class apb_master cbs extends uvm_callback;
virtual task trans_received (apb_master xactor , apb_rw cycle);endtask

virtual task trans_executed (apb_master xactor , apb_rw cycle);endtask

endclass
@ (this.sigs.mck);

this.trans_received(tr);

‘uvm_do_callbacks(apb_master,apb_master cbs,trans_received(this,tr))

case (tr.kind)
apb_rw::READ: this.read(tr.addr, tr.data);
apb_rw::WRITE: this.write(tr.addr, tr.data);

endcase

41

this.trans_executed(tr);
‘uvm_do_callbacks(apb_master,apb_master cbs,trans executed(this,tr))
3. reg2apb_adapter
— AR AR E SIS PR
AN & reg2bus, AF H B2 register model 1T sequence & H) uvm_reg bus op 27
AR B 4 3 1), sequencer RE WS HE 2 T2
H—A 72 bus2reg, 1EH IR RS2k B EIER, FEUERA transaction 3% 3 B,
register model BEUSHEZ I, —Il register model BE W% 557 AH N 1) 25 47 2% FIAE

52 class req2apb_adapter extends uvm_reg_adapter;

53

54 “uum_object_utils({reg2apb_adapter)

5%

5é function new{string name = "regZapb_adapter"};

57 super.new{name} ;

58 endfunction

59

68 virtual function wum_sequence_item reg2bus{const ref uvm_reg_bus_op ru};
61 apb_rw apb = apb_ruw::type_id::create("apb_ruw'};

62 apb.kind = {rw.kind == UUH_READ} ? apb_rw:z:READ : apb_rw::UWRITE;
63 apb.addr = rw.addr;

64 apb.data = rw.data;

65 return apb;

66 endfunction

a7

68 wirtual function void bus2reg{uvm_sequence_item bus item,

69 ref uvm_reg_bus_op rwj;

7@ apb_rw apb;

71 if (*$cast({apb,bus_item)) begin

72 “uvm_fatal("HOT_APB_TYPE","Provided bus_item is not of the correct type™)
73 return;

74 end

5 rw.kind = apb.kind == apb_rw::READ 7 UUH_READ : UVUHM_WRITE;

] rw.addr = apb.addr;

Frd rw.data = apb.data;

78 rw.status = UUM_IS_DK;

79 endfunction

80

81 endclass

Register model 2 145 A 1 UM 2 Q47T 3% [H] 25 register model 1?2 monitor M I 2] 5245
YEJG, BRI B s 25 A trans TR IE H 2, uvm reg predictor 128 & HIM0IX A
transaction, J£<x 1 adapter bus2reg, I trans # 5 uvm reg bus op, regsiter model M J&
B ARIL IR BE

uvm_reg_predictor#(apb_rw) apb2reg_predictor;

apb2reg_predictor = new("apb2reg_predictor"”, this);
reg2apb_adapter reg2apb = new;
regmodel.default_map.set_sequencer(apb.sqr,reg2apb);
apb2reg predictor.map = regmodel.default map;
apb2reg_predictor.adapter = reg2apb;
regmodel.default map.set auto predict(0);

42

apb.mon.ap.connect(apb2reg_predictor.bus_in);
4. Regmodel
— M — A A4 (extends uvm_reg) E XK —A class, FNFAF A AT REAL S 2 A
uvm_reg_filed, new PRECHHIAN NS L, build AL create F1 configure (1)
H:
Configure ZH 3R A: parent, G 2N %, AL bit FFWRE R, ViRl 5=, volatile, &
fifl, REEAL, ZEFERL, J& 75 A LR AAEEL

24 class dut_ID extends uvm_req;

25

26 uvm_reg_field REVISION_ID;

27 uum_req_field CHIP_ID;

28 uum_reqg_field PRODUCT_ID;

29

)] function new(string name = “‘dut_ID");
31 super .new{name ,32 ,UVM_NO_COVERAGE) ;
32 endfunction

33
3u virtual function void build();

35 this .REVISION_ID = uum_reg_field::type_id::create("REVISION_ID"};
36 this .CHIP_ID = uum_reg_field::type_id::create("CHIF_ID"};

37 this .PRODUCT_ID = uvum reg field::type id::create{"PRODUCT ID"};

1

39 this.REVISION _ID.configureithis, &, @8, "RO", 8, 8'hez, 1, 8, 1);
La this.CHIP_ID.configure{this, 8, &, "RO", @, 8'h5a, 1, B, 1);
1 this.PRODUCT_ID.configure{this, 18, 16,"R0", 8, 18°h1756, 1, 6, 1});
42 endfunction

43

Iy “uum_object_utils{dut_ID)

L5

46 endclass

5. XIT UVM_MEM [] extends, A new bRi%, % build K%L, new HEH e X KE
558 s

89 class dut_RAM extends uum_mem;

948

1 function new(string name = “dut RAH");

92 super.newi{name,"h488,32 ,"RW"' ,UUM_HO_COUERAGE} ;

03 endfunction

oL

9% “uum_object utils{dut_RAM)
96

97 endclass

6. WATAMETAAREHETE— uvm_reg block H; 7E block H AL FIMLIX L Z5 /788, 2R
J& i configure() A1 build() B %

43

188 class dut_regmodel extends uvm reg _block;

rand dut ID
rand dut_DATA

rand dut_SOCKET SOCKET[256];
rand dut_RAM RAM;

function new{string name = "slave"};
super .new(name ,UUH_NO_COVERAGE) ;
endfunction

virtual function void build{});

f/ create
1D = dut_ID::type id::create{"ID");
DATA = dut_DATA::type_id::create{"DATA");
foreach {(SOCKET[i])}
SOCKET[i] = dut_SOCKET::type_id::create($sformatf("SOCKET[%0d]",i));
RAM = dut RAM::type id::create{"DHMA_RAM");

// configure

ID.configure{this,null,"ID"});

ID .build(};

DATA.configure{this,null,"DATA™);

DATA.build();

foreach {SOCKET[i]) begin
SOCKET[i]-configure(this,null,$sformatf("SOCKET[%0d]",i});
SOCKET[1i]-build({)};

end

RAM.configure{this,"DMA™);

f# define default map
default_map = create_map(“default_map™, *h8, 4, UUM_LITTLE_EHDIAHN, 1)};
default map.add req{ID, ‘hB, "RW"});
default_map.add_reqg{DATA, "h24, “RW"};
foreach {SOCKET[i])}
default_map.add_reg(SOCKET[i], "h1888 + 16 = i, "RU");
default map.add mem{RAH, ‘h2888, “RW");

endfunction

“uvm_object_utils{dut_regnodel)

endclass : dut_regmude!

7. {E env 1411k uvm_reg block, %11k apb agent, ffl{t. uvm reg sequence, 7E build phase
/1 create regmodel, apb_agent,apb2reg_predictor 55 ;
uvm_reg_sequence seq; H BT AHIE N4 — & B XA sequence?
uvm_reg_predictor#(apb_rw) apb2reg_predictor;
FTHIE # E regmodel H T UL AT AF 2) B AR HT K 5
begin
string hdl_root="tb_top.dut";
void'($value$plusargs("ROOT HDL PATH=%s",hdl root));
regmodel.set_hdl path _root(hdl root);

end

44

32 class tb_env extends uvm_component;

33
34
13
36
37
38
39
ua
1
42
L3
Ly
L
Lli]
L7
L8
Lo
58
51
52
53
5y
55
56
57
58

i1t}
a1
62
63
a4
65

“uum_component_utils{tb enu}

dut_regmodel reqmodel;

apb_agent apb;

uvm_reg_sequence seq;
“ifdef EXPLICIT_HOH

uum_req predictor#i{apb_rw) apb2reg_predictor;
“endif

function new{string name, uum_component parent=null};
super.new{name ,parent};
endfunction

virtual function void build_phase(uvm_phase phase);
if {regmodel == null) begin
regmodel = dut_regmodel::type id::create("regmodel",.get full name{)});
regmodel .build();
reqmodel .1ock model();

apb = apb_agent::type_id::create("apb”, this);
“ifdef EXPLICIT_HOH
apb2reg_predictor = new("aph2reg_predictur",IthiS);
“endif
end

begin
string hdl root = "tb_top.dut";
uuid'($ualue$p1usargs("RDUT_HDL_PHTH=%5",hdl_ruut));
reqmodel .set_hdl_path_vroot{hdl_root};

end

endfunction

virtual function void connect_phase(uvm_phase phase);
if (apb !=null) begin
reg2apb_adapter reg2apb = new;
regmodel.default map.set _sequencer(apb.sqr,reg2apb);
‘ifdef EXPLICIT MON
apb2reg_predictor.map = regmodel.default map;
apb2reg_predictor.adapter = reg2apb;
regmodel.default map.set auto predict(0);
apb.mon.ap.connect(apb2reg_predictor.bus_in);
“else
regmodel.default_ map.set_auto predict(1);
‘endif
end
regmodel.print();

endfunction

45

virtual function void connect_phase{uvm_phase phase};
if (apb *= null) begin
reg2apb_adapter reqg2apb = newﬂ
regnodel .default_map.set_sequencer{apb.sqr,reqg2apb};
“ifdef EXPLICIT_MON
apb2req_predictor.map = regmodel.default_map;
apb2reg_predictor.adapter = reg2apb;
regnodel .default_map.set_auto_predict{8);
apb.mon.ap.connect{apb2reg_predictor.bus_in);
“else
regnodel .default_map.set_auto_predict{1);
“endif
end
regmodel.print(};
endfunction

virtual task run_phase(uum_phase phase};
phase.raise_objection{this);
if (seq == null) begin
uvm_report_fatal({"HO_SEQUEHCE","Env's sequence is not defined. Hothing to do. Exiting.™};

return;
end

begin : do_reset
uvum_report_info("RESET","Performing reset of 5 cycles”);
tbh_top.rst <= 1;
repeat (5) @{posedge tb_top.clk);
th_top.rst <= 8;
end

paliliH

uum_report_info("START_SEQ™,{"Starting sequence '',seq.get_name(),”""});
seq.model = regmodel;
seq.start(null};
phase.drop_objection{this);
endtask

endclass

virtual task run_phase(uvm_phase phase);
phase.raise_objection(this);
if (seq == null) begin
uvm_report_fatal("NO_SEQUENCE","Env's sequence is not defined. Nothing to do.

Exiting.");
return;

end
#100;
uvm_report_info("START SEQ",{"Starting sequence "',seq.get name(),""});
seq.model = regmodel;
seq.start(null);
phase.drop_objection(this);

endtask

8. 1E test & L — sequence IR{EH % env F 1] sequence;

46

36 initial

37 begin

a8 static tb_enu enu = new{"env");

39

ue begin

1 uum_report_server swvr;

42 sur = _global_reporter.get_report_server();

43 sur.set_max_quit_count{18);

Ly end

L5

L6 begin

47 string seq_name;

48 if {$value$plusargs("UUH_SEQUENHCE=%s",seq_name))} begin

49 uvm_refq_sefquence Seq;

58 seq = uum_utils #{uvm regq_sequence)::create_type by name{seq_name,"tb"};
g1 if (seq == null)

52 uvn_report_fatal({"'HO_SEQUENCE™,

53 "This env requires you to specify the sequence to run using UWUM_SEQUEMCE=<name>");
5h env.seq = seq;

5t end

56 enfj

57

58 uum_config_db#{apb vif)::set{env, "apb"™, "vif", $root.tb_top.apbB);
59

68 run_test({};

61 end

seq = uvm_utils #(uvm_reg_sequence)::create_type by name(seq name,"tb");// A K18 iX &
Mz BN ? NAZH 2 A —4 uvm_reg_sequence
9. U regmodel "I AT AEAT create BB A 5 ABHE EX, 2 HILT IR
ncelab: *F,INTERR: INTERNAL EXCEPTION - N

The tool has encountered an unexpected condition and must exit.
l|IContact Cadence Design Systems customer support about this
problem and provide enough information to help us reproduce it,
including the logfile that contains this error message.
TOOL: ncelab 10.20-s009
Il HOSTNAME: cdlc03
OPERATING SYSTEM: Linux 2.6.18-238.el5 #1 SMP Thu Jan 13 15:51:15 EST 2011 x86 64
MESSAGE: sv_seghandler - trapno -1 addr(0x00000000)
csi-ncelab - CSI TRIAL: Cadence Support Investigation, sending details to ncelab.err
csi-ncelab - CSI TRIAL: investigation complete, send ncelab.err to Cadence Support
irun: *E,ELBERR: Error during elaboration (status 255), exiting.
make: *** [test] Erpee=3——- - -

[1-24] WFFHE UVM F& (10) - ENfE BICE
1. {E ubus_base test H':

‘uvm_info(get type name(),$sformatf("Printfing the test topology : \n
%s",this.sprint(printer)),UVM_LOW)

47

uvm test top
ubus_example tbo
scoreboard@
item collected export
disable scoreboard
num_writes
num_init reads
num_uninit reads
recording detail
ubus@
bus monitor
masters[0]
slaves[0]
num_masters
num_slaves
has_bus_monitor
intf checks_enable
intf coverage enable
recording detail
recording detail

2. {E ubus base test H:

Type Size
test read byte -
ubus_example_tb -
ubus_example scoreboard -
uvm_analysis_imp -
integral 1
integral 32
integral 32
integral 32
uvm_verbosity 32
ubus env -
ubus bus monitor -
ubus master agent -
ubus_slave agent -
integral 32
integral 32
integral 1
integral 1
integral 1
uvm_verbosity 32
uvm_verbosity 32

'de

UvM FULL
@4934
@5005
@5270
@5044
'hl

'hl

'hl

'hl

'hl

UvM FULL
UvM FULL

UVM INFO test lib.sv(25) @ @: uvm _test top [test read byte] Printfing the test topology :

uvm_report_info(get full name(),"start of test run_phase...",UVM_LOW);

uvm_top.print_topology();

UVM INFO @ O0: uvm test top [uvm test top] start of test run phase...
UVM INFO @ 0: reporter [UVMTOP] UVM testbench topology:

uvm_test top
ubus example tho

scoreboard0
item collected export
recording detail
disable scoreboard
num writes
num init reads
num uninit reads
recording detail
ubus@
bus_monitor
item collected port
recording detail
state port
recording detail
checks_enable
coverage enable
num transactions
slave addr map
[slaves[0]]
min addr
max_addr
recording detail
masters[0]

3. {f master_monitor 7':

Type Size
test read byte -
ubus example tb -
ubus example scoreboard -
uvm analysis imp -
uvm verbosity 32
integral 1
integral 32
integral 32
integral 32
uvm verbosity 32
ubus_env -
ubus_bus monitor -
uvm analysis port -
uvm verbosity 32
uvm analysis port -
uvm verbosity 32
integral 1
integral 1
integral 32
aa(object,string) 1
slave address map info -
integral 32
integral 32
uvm verbosity 32
ubus master agent -

48

@192
UVM FULL
'ho

'do

'do

'do

UVM FULL
@4934
@5005
@5375
UVM FULL
@5449
UVM FULL
'hl

'hl

'ho
@8768
'ho
"hfff
UVM FULL
@5270

‘uvm_info({get full name()," MASTER ID"},$sformatf(" =
%0d",master id),UVM_MEDIUM)

UVM_INFO ubus_master monitor.sv(65) @ 0:
uvm_test_top.ubus_example tb0.ubus0.masters[0].monitor
[uvm_test top.ubus example tb0.ubus0O.masters[0].monitor MASTER ID] =0
4. ft master_sequence lib H':

if (starting_phase!=null) begin
‘uvm_info(get type name(), $sformatf("%s pre body() raising %s objection",
get_sequence_path(), starting_phase.get name()), UVM_MEDIUM);

UVM_INFO ubus_master _seq_lib.sv(12) @ 0:
uvm_test top.ubus example tb0.ubusO.masters[0].sequencer@@read byte seq [read byte seq]
read byte seq pre_body raising run objection
5. {E£ slave sequence lib H':

‘uvm_info(get type name(), $sformatf("%s starting...",
get_sequence_path()), UVM_MEDIUM);

UVM_INFO ubus_slave seq lib.sv(66) @ 0:
uvm_test_top.ubus_example tb0.ubus0.slaves[0].sequencer@@slave_memory_seq
[slave_memory seq] slave memory_seq starting ...

6. {E master_seq lib H':
‘uvm_info(get type name(),$sformatf("%s read : addr = "x%0h, data[0] = "x%O0h",
get _sequence_path(), rsp.addr, rsp.data[0]), UVM_HIGH);

UVM_INFO ubus_master_seq_lib.sv(48) @ 300:
uvm_test top.ubus example tb0.ubusO.masters[0].sequencer@@read byte seq [read byte seq]
read byte seq read: addr="x2c7,data[0]= "x39

[1-25] W TIRFHE UVM F4& (11) -5k

1. R R g b (B AN ST AT TR “\7
2. {E ubus_slave seq lib.sv #; B E R E;
ubus_slave sequencer p_sequencer;
$cast(p_sequencer, m_sequencer);
p_sequencer.addr_ph_port.peek(util_transfer);

—FOR UL IRATAE sequencer HHRANIG IR AL 2, {H /2 1E ubus_slave_sequencer H 4111 |
—/> umv_blocking peek port, fFl{t.E% I addr ph port, IX addr ph port & sequencer F K F
slave_monitor FEAT@E(E . 1815 M 325 K2 slave_monitor YL F| transaction 15 #AE 5 75
BRI slave memory_seq HEHATLRAT ; BT LATE slave_ memory seq Hili TLP %10 T
slave_monitor H 1] peek PAI%Y;

49

i 5k & & p_sequencer 1 m sequencer] [X Jill : m sequecer J& f&] FE K
uvm_sequencer_base [$5 %1, 1 p_sequencer s& §& [1] M\ uvm_sequencer base JK 2E Hi K)
ubus_slave sequencer FJFE%5l; FrLAWIERZE 2|7 X % ubus_slave sequencer 711/ i1 48 &,
WAL B — > p_sequencer TREFABEH T
3. {E ubus slave seq lib.sv #1; #HE FHIE L,

‘uvm_declare p sequencer(ubus_slave sequencer)
$cast(req, create_item(ubus_transfer::get type(), p_sequencer, "req"));
p_sequencer.addr_ph_port.peek(util transfer);
4. {f ubus_slave monitor.sv H'; A T HEE;
void'(this.begin_tr(trans_collected));
5. Get_full name()F get type name()] X 7]

Get_full name():

uvm_test top.ubus example tb0.ubus0.slaves[0].driver
[uvm_test top.ubus_example tb0.ubus0.slaves[0].driver]

Get_type name():

uvm_test top.ubus example tb0.scoreboard0 [ubus example scoreboard]

50

	基于SV+UVM搭建SOC/ASIC验证平台
	[1-1]　如何顺序的写UVM平台（1）-Basic
	[1-2]　如何顺序的写UVM平台（2）-MasterA
	[1-3]　如何顺序的写UVM平台（3）-Master
	[1-4]　如何顺序的写UVM平台（4-1）-Slave
	[1-5]　如何顺序的写UVM平台（4-2）-Slave
	[1-6]　如何顺序的写UVM平台（4-3）-Slave
	[1-7]　如何顺序的写UVM平台（5-1）-Score
	[1-8]　如何顺序的写UVM平台（5-2）-BusM
	[1-9]　如何顺序的写UVM平台（6）-Sequenc
	[1-10]　如何顺序的写UVM平台（7）-ubus_e
	[1-11]　如何顺序的写UVM平台（8）-平台总结
	[1-12]　如何顺序的写UVM平台（8-1）-top.
	[1-13]　如何顺序的写UVM平台（8-2）-pkg.
	[1-14]　如何顺序的写UVM平台（8-3）-test
	[1-15]　如何顺序的写UVM平台（8-4）-tran
	[1-16]　如何顺序的写UVM平台（8-5）-sequ
	[1-17]　如何顺序的写UVM平台（8-6）-driv
	[1-18]　如何顺序的写UVM平台（8-7）-Moni
	[1-19]　如何顺序的写UVM平台（8-8）-Agen
	[1-20]　如何顺序的写UVM平台（8-9）-Scor
	[1-21]　如何顺序的写UVM平台（8-10）-Env
	[1-22]　如何顺序的写UVM平台（8-11）-exa
	[1-23]　如何顺序的写UVM平台（9）-RAL
	[1-24]　如何顺序的写UVM平台（10）-打印信息汇
	[1-25]　如何顺序的写UVM平台（11）-疑惑

