
1

基于 SV+UVMSV+UVMSV+UVMSV+UVM搭建 SOC/ASICSOC/ASICSOC/ASICSOC/ASIC验证平台

UVM-1.1中提供了一个 UBUS 的例子，但是该例子对于刚刚入门的人来说还是需要一定时

间去消化的，本文对该例子进行一步一步的简化，可以帮助理解。

[1-[1-[1-[1-1111]]]] 如何顺序的写 UVMUVMUVMUVM平台（1111）-Basic-Basic-Basic-Basic

1. 平台可以在前期规划好，但是对于搭建平台的人来说，调试永远是最大的问题，如果都

将一个个 component都写完了，调试起来还是有点痛苦的，所以我更倾向于一步一步的

调试平台；先写一个可以 pass 的基本平台，然后在不断的扩展该平台，最后在各个

component中加入所需要的 function或者 task。当然，当对搭建平台数量以后，现在基

本对平台中的 component一次性搭建完成，然后调试并添加需要的 function或者 task即

可。

2. 最简单的 UVM 平台，一个 interface，一个 DUT，一个 TOP，一个 test，一个 ENV 就

可以工作了，然后慢慢的添加各个 component；

3. 写 interface

4. 写 top module，在 top中例化 DUT，interface和 DUT在 top中 include

uvm_config_db#(virtualuvm_config_db#(virtualuvm_config_db#(virtualuvm_config_db#(virtual ubus_if)::set(uvm_root::get(),ubus_if)::set(uvm_root::get(),ubus_if)::set(uvm_root::get(),ubus_if)::set(uvm_root::get(), "*","*","*","*", "vif","vif","vif","vif", vif);vif);vif);vif);

2

run_test();run_test();run_test();run_test();

5. 写Makefile，此时编译可以通过

6. 写自定义的 package，然后在 top中 include 该 package

typedeftypedeftypedeftypedef uvm_config_db#(virtualuvm_config_db#(virtualuvm_config_db#(virtualuvm_config_db#(virtual ubus_if)ubus_if)ubus_if)ubus_if) ubus_vif_config;ubus_vif_config;ubus_vif_config;ubus_vif_config;

typedeftypedeftypedeftypedef virtualvirtualvirtualvirtual ubus_ifubus_ifubus_ifubus_if ubus_vif;ubus_vif;ubus_vif;ubus_vif;

后来证明，这两句话在 ubusubusubusubus的 envenvenvenv中根本没有用上；

7. 定义 Environment，并将该文件加入到自定义的 package中，这个时候编译不能通过

此处的 getgetgetget和 toptoptoptop中的 setsetsetset是一对，如果 toptoptoptop中没有 setsetsetset则会报告·uvm_fataluvm_fataluvm_fataluvm_fatal中的错误

if(!uvm_config_db#(virtualif(!uvm_config_db#(virtualif(!uvm_config_db#(virtualif(!uvm_config_db#(virtual ubus_if)::get(this,ubus_if)::get(this,ubus_if)::get(this,ubus_if)::get(this, "","","","", "vif","vif","vif","vif", vif))vif))vif))vif))

`uvm_fatal("NOVIF",{"virtual`uvm_fatal("NOVIF",{"virtual`uvm_fatal("NOVIF",{"virtual`uvm_fatal("NOVIF",{"virtual interfaceinterfaceinterfaceinterface mustmustmustmust bebebebe setsetsetset for:for:for:for:

",get_full_name(),".vif"});",get_full_name(),".vif"});",get_full_name(),".vif"});",get_full_name(),".vif"});

8. 定义 base_test，需要在 top 中 include 该 test 文件，并在 makefile 中加入编译该 test 的

命令；此时可以再次编译通过，并运行最 basic的 testcase

3

编译第一次通过

总结一：在一个芯片的验证平台中，总会给一个最 basicbasicbasicbasic的 base_testbase_testbase_testbase_test，但是可能每个人

负责验证的部分是不一样的，比如说我要验证 USBUSBUSBUSB，那我一定会从 base_testbase_testbase_testbase_test中派生一个

usb_base_testusb_base_testusb_base_testusb_base_test来给自己用，这样我可以在 usb_base_testusb_base_testusb_base_testusb_base_test加入任何我想要的函数，而不会影

响到其他人。

总结二：如何从 testtesttesttest中传递参数到 top_tb,top_tb,top_tb,top_tb,如果用 uvm_config_dbuvm_config_dbuvm_config_dbuvm_config_db在 base_testbase_testbase_testbase_test中设置变

量的值，那么这些变量在 environment/agent/dirverenvironment/agent/dirverenvironment/agent/dirverenvironment/agent/dirver等等中可以 getgetgetget到的，但是在 top_tbtop_tbtop_tbtop_tb中

不能 getgetgetget到的？采用下面的方式就可以

uvm_config_dbuvm_config_dbuvm_config_dbuvm_config_db #(int)::set(null,"uvm_test_top","set_#(int)::set(null,"uvm_test_top","set_#(int)::set(null,"uvm_test_top","set_#(int)::set(null,"uvm_test_top","set_usbusbusbusb_single_test",1);_single_test",1);_single_test",1);_single_test",1);

总结三：需要注意的是，不要把定义 interfaceinterfaceinterfaceinterface的文件 includeincludeincludeinclude在 packagepackagepackagepackage中，这会导致

编译不过的。

4

总结四：uvm_report_infouvm_report_infouvm_report_infouvm_report_info和宏`uvm_info`uvm_info`uvm_info`uvm_info在用法是没有区别的，都是用来打印消息的。

[1-[1-[1-[1-2222]]]] 如何顺序的写 UVMUVMUVMUVM平台（2222）-MasterAgent-MasterAgent-MasterAgent-MasterAgent

9. 定义 sequence item，注意，一种类型的 transaction需要对应一个 driver；

`uvm_object_utils_begin(ubus_transfer)`uvm_object_utils_begin(ubus_transfer)`uvm_object_utils_begin(ubus_transfer)`uvm_object_utils_begin(ubus_transfer)

`uvm_field_int`uvm_field_int`uvm_field_int`uvm_field_int (addr,(addr,(addr,(addr, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_enum`uvm_field_enum`uvm_field_enum`uvm_field_enum (ubus_read_write_enum,(ubus_read_write_enum,(ubus_read_write_enum,(ubus_read_write_enum, read_write,read_write,read_write,read_write, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_int`uvm_field_int`uvm_field_int`uvm_field_int (size,(size,(size,(size, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_array_int(data,`uvm_field_array_int(data,`uvm_field_array_int(data,`uvm_field_array_int(data, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_array_int(wait_state,`uvm_field_array_int(wait_state,`uvm_field_array_int(wait_state,`uvm_field_array_int(wait_state, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_int`uvm_field_int`uvm_field_int`uvm_field_int (error_pos,(error_pos,(error_pos,(error_pos, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_int`uvm_field_int`uvm_field_int`uvm_field_int (transmit_delay,(transmit_delay,(transmit_delay,(transmit_delay, UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)UVM_DEFAULT)

`uvm_field_string`uvm_field_string`uvm_field_string`uvm_field_string (master,(master,(master,(master, UVM_DEFAULT|UVM_NOCOMPARE)UVM_DEFAULT|UVM_NOCOMPARE)UVM_DEFAULT|UVM_NOCOMPARE)UVM_DEFAULT|UVM_NOCOMPARE)

`uvm_field_string`uvm_field_string`uvm_field_string`uvm_field_string (slave,(slave,(slave,(slave, UVM_DEFAULT|UVM_NOCOMPARE)UVM_DEFAULT|UVM_NOCOMPARE)UVM_DEFAULT|UVM_NOCOMPARE)UVM_DEFAULT|UVM_NOCOMPARE)

`uvm_object_utils_end`uvm_object_utils_end`uvm_object_utils_end`uvm_object_utils_end

5

需要思考哪些内容需要在 transaction中定义？

10. 定义好了 transaction，就可以开始定义 base sequence 了；注意，在 base_sequence 的

pre_body 和 post_body 中定义 raise_objection 和 drop_objection 是很有好处的；将 base

sequence定义成虚基类，只有派生后才能进行实例化；

6

11. 派生 sequence；先派生出一个 sequence用于平台调试

12. 用了 sequence，就该写 sequencer了；sequencer是整个环境中最简单的部分；

13. 有了 sequencer，就可以定义 driver了，定义好 driver，然后需要在 agent中进行例化；

在 driver中一定要 get interface，因为 driver直接和 DUT做交互;

7

14. 注意在 driver中如何写 get sequence：

15. 有了 sequencer，driver，实际上就可以定义 master agent了，在 agent中要实现 dirver和

sequencer的连接

16. Agent实现了之后，就需要在 env中例化

8

17. 然后更改 test_lib.sv，写一个从 base_test派生出来的 test，设置默认的 sequence。和 master

的数量；

18. 然后在 ubus_pkg.sv 中 include各个 component的文件，然后编译，修改一些语法错误，

但是一直会出现如下错误：make test_read_byte

19. 错误的意思是说这个 sequence 不能够 get 到，在屏蔽掉设置默认的 sequence 后，编译

可以正确的通过，但是此时平台中没有数据的流动，需要 debug；

9

20. 打开上面的屏蔽，到 read_byte_seq中去，将 task body()屏蔽掉也可以 pass

21. 到目前为止，该平台中有 ENV，agent，driver，sequencer，sequence，transaction 了，

可以进行最基本的 test操作了，但是还需要 monitor，scoreboard等等；

总结一：driver（sequencer也是）是和发送的 sequence类型有关的，也就是一个 driver

要发送的 sequence 的类型是固定死了的，那么我们需要将多种类型的 sequence通

过一个 driver来发送要怎么办？其实将多种类型的 sequence不要做成 sequence，做

成 uvm_object，然后在一个大的 uvm_object中 random这些小的 uvm_object（就是

小的 sequence），然后用这个最大的 uvm_object来做 sequence_item就对了。

总结二：sequence_item中要具备哪些内容呢？严格的说是你当前 module所要用到的所

用 data flow的数据类型。

总结三：别忘记在 driver中 get interface。

[1-[1-[1-[1-3333]]]] 如何顺序的写 UVMUVMUVMUVM平台（3333）-Master-Master-Master-Master MonitorMonitorMonitorMonitor

22. 编写 master_monitor；该 component 的主要作用是收集 driver 发出的各种数据类型的

coverage。然后需要在 agent中例化

10

23. 在 agent中对 master 的 monitor进行例化之后，master的部分就已经完成；

24. 到目前为止，平台能动，但是没有 sequence 在里面流动，所以时间是没有动的；需要

在目前现有的资源下解决这个问题？这是因为在 sequence中没有打开`uvm_do_*相关的

函数；打开后时钟就开始动了，但是停止不下来，需要进一步 debug

25. 如何让平台停止下来呢？不能够停止是因为有一根信号没有驱动，导致一直等待

11

26. 在 top中对该信号进行驱动后，该平台就能自动停止了

[1-[1-[1-[1-4444]]]] 如何顺序的写 UVMUVMUVMUVM平台（4-14-14-14-1）-Slave-Slave-Slave-SlaveAgentAgentAgentAgent

27. 前面完成了该平台最基本的部分工作，这个时候这个平台会有一些动作了，但是还需要

定义更多的东西，比如总线测试需要 master和 slave，DMA 测试需要 slave model，DDR

控制器测试需要 slave model，SPI/UART/IIC/IIS/PCIE等都需要另外的 model，我更倾向

于 model和验证方法学是独立开来的，这样在从一种验证方法学切换到另外一个验证方

法学后不需要修改 model，比如像 micron提供的 DDR model和 NND model都是独立于

验证方法学的；当然对于 ubus总线测试则无所谓，因为整个 DUT 外面的东西都是不固

定的；当然，如果能让 slave固定则最好。

28. Slave driver 的作用是返回 Response，那么这个 response 的内容是从 slave 的 sequencer

中来的，而 sequencer 的 item 则来自 slave sequence lib，所以需要首先写 slave 的

sequence；slave 有两种 sequence，第一种返回读写类型，第二种返回地址和数据等；

29. 先编写 sequence，在 package中 include，编译可以通过；

30. 编写 slave_sequencer，在 package中 include，注意，并没有地方例化它，编译可以通过

12

31. 编写 slave_agent，并在 slave_agent 中例化 sequencer，在 package 中 include，注意，并

没有地方例化这个 agent，编译可以通过

32. 然后需要做一系列动作，来设置 slave的数量，并在 env中例化 slave_agent；

33. 出现在 slave 部分,目前只有 agent,sequencer,sequence,出现如下错误;

UVM_ERROR @ 0:

uvm_test_top.ubus_example_tb0.ubus0.slaves[0].sequencer.addr_ph_port [Connection Error]

connection count of 0 does not meet required minimum of 1

这是因为在 sequencer中声明了一个 TLM port,但是一直没有连接它,所以需要屏蔽掉才

可以;

13

34. 完成上面的修改后，可以得到下面的结果：

14

[1-[1-[1-[1-5555]]]] 如何顺序的写 UVMUVMUVMUVM平台（4-24-24-24-2）-Slave-Slave-Slave-Slave DriverDriverDriverDriver

35. Slave driver的作用是针对 master的读写访问返回数据或者响应；当然还要驱动 slave 方

面该驱动的信号，首先需要获得 Virtual interface。然后获得 slave_sequence_lib 中的

sequence并驱动到总线上；

15

36. 驱动总线这个地方还是有点不明白？resp获得到写的数据后会存放起来吗？待解决，这

个确实会存放起来，在 ubus_slave_req_lib.sv 中的 slave_memory_seq 中的 post_do 函数

中可以看到。

37. Slave_driver写完后，就需要在 slave_agent中例化它，并将 slave_driver和 slave_sequencer

连接起来；在 package 中 include ubus_slave_driver.sv；此时 slave 并不会发送任何数据

16

出来，因为没有在 test中设置 default sequence；

38. 我们需要让 slave 动起来，因为我们的 case是读操作，那么就需要 slave 提供需要，所

以需要在 slave_sequence_lib.sv 中加入一个 memory 的 sequence；在 pre_do中将要读取

的数据准备好，在 post_do中将写入的数据存起来；

39. 在 task body中将 sequencer中的 trans peek出来，不知道有什么用处，但是这个地方得

到的 req又是通过 sequencer发送给 driver的，需要更多的理解；

17

40. 既然有了读写返回的 sequence，就可以再 test中设置 slave 的默认 sequence了；

read_modify_write_seq::type_id::get());

uvm_config_db#(uvm_object_wrapper)::set(this,

"ubus_example_tb0.ubus0.slaves[0].sequencer.run_phase",

"default_sequence",

slave_memory_seq::type_id::get());

设置后出现如下错误：

ncvlog: *E,NOIPRT (ubus_slave_seq_lib.sv,31|49): Unrecognized declaration

'ubus_slave_sequencer' could be a spelling mistake [SystemVerilog].

(`define macro: uvm_declare_p_sequencer

[/home/dengf/uvm-1.1/src/macros/uvm_sequence_defines.svh line 446], `include file:

ubus_slave_seq_lib.sv line 31, `include file: ubus_pkg.sv line 12, file: ubus_tb_top.sv line 5)

在 package 中将 sequencer的顺序调整到 seq_lib的前面即可。

41. 另外 seq中用到了 sequencer中的 addr_ph_port，所以需要将原来的屏蔽打开，并且需要

连接 addr_ph_port才可以；但是目前的 monitor还没写好，所以先屏蔽掉所有用到这个

port的地方吧，屏蔽后编译通过，但是出现如下错误：

UVM_INFO @ 0:

uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer@@read_byte_seq

[uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer.read_byte_seq] sequence is okay

18

now,please FIXME.

UVM_INFO @ 150: uvm_test_top.ubus_example_tb0.ubus0.masters[0].driver

[uvm_test_top.ubus_example_tb0.ubus0.masters[0].driver] enter get_and_drive.

Error! NULL pointer dereference

File: ./ubus_slave_seq_lib.sv, line = 38, pos = 30

Scope: worklib.ubus_pkg::slave_memory_seq@8242_5.pre_do

Time: 160 NS + 2

问题的原因就是在 sequence中没有 port来 get到现有的 sequence，所以需要重新例化一

个，写一个 util_transfer的 new函数即可；

42. 后面，testcase不能结束，问题的原因需要 debug；问题的原因是在 slave_sequence_lib.sv

中的 task body 中在 forever begin 。。。end 中调用了 starting_phase.raise_objection 和

starting_phase.drop_objection，将 forever去掉后，能正确的结束，但是想想 slave正常的

工作吗？整个平台后来又是怎么停止的呢？拭目以待吧

[1-[1-[1-[1-6666]]]] 如何顺序的写 UVMUVMUVMUVM平台（4-34-34-34-3）-Slave-Slave-Slave-Slave MonitorMonitorMonitorMonitor

43. 个人觉得 slave monitor和 master monitor一个就足够了，我不知道为什么这个地方需要

用两个，因为看起来都是对 coverage 做统计而已；另外，monitor中有一个 peek函数，

这个函数是在 seq_lib 中，用来将 monitor收到的 trans送入到 seq_lib 中存储用的，采用

的是 addr_ph_port进行通信；

19

44. 然后需要将 ubus_slave_monitor.sv在 package中 include，并在 agent中例化 slave_monitor，

需要打开 sequencer 中屏蔽的 addr_ph_port，并在 seq_lib.sv 中采用 addr_ph_port 来 get

transaction，而不是自己采用一个 new（）的构造函数；还要将 sequencer的 addr_ph_port

和monitor的 addr_ph_imp连接起来；将 slave_seq_lib中的 slave_mem_seq中的 task body

中的 forever加上；

这次加上 foreverforeverforeverforever后能停止，是因为在 peekpeekpeekpeek函数中会等待一个 eventeventeventevent，如果没有等待

eventeventeventevent，就不会 raise_objectionraise_objectionraise_objectionraise_objection。

20

到目前为止可以看到 master_monitormaster_monitormaster_monitormaster_monitor和 slave_monitorslave_monitorslave_monitorslave_monitor中都能出现 coveragecoveragecoveragecoverage的统计结

果了。

UVM_INFO ubus_master_monitor.sv(153) @ 300:

uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor

[uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor] Covergroup 'cov_trans' coverage:

15.000000

UVM_INFO ubus_slave_monitor.sv(196) @ 300:

uvm_test_top.ubus_example_tb0.ubus0.slaves[0].monitor

[uvm_test_top.ubus_example_tb0.ubus0.slaves[0].monitor] Covergroup 'cov_trans'

coverage:15.000000

[1-[1-[1-[1-7777]]]] 如何顺序的写 UVMUVMUVMUVM平台（5-15-15-15-1）-Scoreboard-Scoreboard-Scoreboard-Scoreboard

45. 到目前为止，环境中最基本的 component都有了，DUT 可以正常工作了，但是还需要

一个 scoreboard 来判断 DUT 工作是否正确；首先 scoreboard 应该声明一个 TLP imp，

用来接收 master_monitor和 slave_monitor传递过来的 collected_trans；

21

这个 write 函数是 uvm_analysis_port 调用的，默认就存在 write 函数，所以这个地方是

在重载，即没有写这个函数的时候整个环境也是可以运行的；uvm_analysis_port的作用就是

让 slave_monitor中调用 memory_verify 函数，在读的时候将收到的 transaction中的 data（从

DUT 收到的 data）和存在于 mem 中的 data（送入 DUT 之前的 data）进行比较；（注意，

master_monitor中的 write函数不是来自 scoreboard！！那么来自哪儿呢）

注意：使用宏的时候中间不能换行；

46. Scoreboard 写完后，需要在 ubus_example_tb 中进行例化并连接 TLM 端口到 slave，并

在 package 中 include；

22

47. 到目前为止，master，slave，scoreboard就全了；

对应文件：uvm_ubus_uvm_ubus_uvm_ubus_uvm_ubus_4444.tar.gz.tar.gz.tar.gz.tar.gz

[1-[1-[1-[1-8888]]]] 如何顺序的写 UVMUVMUVMUVM平台（5-25-25-25-2）-Bus-Bus-Bus-Bus MonitorMonitorMonitorMonitor

48. Bus Monitor主要来决定是哪个 salve对 master进行响应；需要和 environment配合使用；

相当于 bus_monitor 起到了一个地址译码的作用；而具体 slave 的地址设置则是在

ubus_example_tb中完成。

49. 首先在 bus_monitor中提供地址设置的 class；

23

50. 在 ubus_monitor中用设置地址的 class例化对象；并调用 slave_address_map_info中的成

员函数 set_address_map来进行具体的地址设置；

51. 在 ubus_slave_driver在进行响应返回的时候，ubus_monitor会根据当前 slave 的地址空

间来决定是哪个 slave 在返回响应；

24

52. Ubus_bus_monitor 只是提供了地址空间的一些函数，具体的调用则是在 ubus_env中完

成的，因为 ubus_bus_monitor是在 env中例化的；需要在 env中例化 ubus_monitor

if(has_bus_monitor == 1) begin

bus_monitor = ubus_bus_monitor::type_id::create("bus_monitor", this);

end

53. ubus_example_tb来完成 slave 地址设置；

54. 此时整个环境已经完成，只需要不断的扩展 sequence和扩展 test_case即可；

25

[1-[1-[1-[1-9999]]]] 如何顺序的写 UVMUVMUVMUVM平台（6666）-Sequence-Sequence-Sequence-Sequence

55. Sequence 是整个平台中的血液，有了 sequence 才能够组合出更多的 testcase；所以的

sequence 的实例化和随机化都是在 task body 中进行的，而平台的开始和停止则是在

sequence的 task pre_body和 task post_body中进行的。

56. 派生出最基本的 sequence，这种最基本的 sequence 不同的就是约束不一样，其他的几

乎一致；我一致不太理解的就是这个地方的 get_response 得到的是什么?从什么地方传

递过来的呢？这个应该是在 master_driver的函数中执行的。

26

57. 在 sequence 中使用`uvm_do*的时候，默认的例化的 sequence 的 name 为 req，这个 req

是可以再`uvm_do*之外访问的，但是想要知道这个 req的详细信息，只能去 driver那边

打印，因为`uvm_do*中包含一系列操作，只有等到 driver 那边完成后才会接着执行

`uvm_do*后面的程序；

58. 如何用简单的 sequence 组合出复杂的 sequence 呢？uvm_do 系统宏可以直接接受一个

sequence的变量作为参数；下面就是将 2个 read_byte_seq和一个 write_byte_seq进行合

并成一个复杂的读-写-读的 sequence；利用这种原理可以进行错误注入等其他操作。

27

[1-[1-[1-[1-10101010]]]] 如何顺序的写 UVMUVMUVMUVM平台（7777）-ubus_example_tb-ubus_example_tb-ubus_example_tb-ubus_example_tb

我认为这个 example_tb 并不是那么必要，毕竟我们在前面不用这个也是可以做一切事

情的，那么这个存在的意义呢？没有这个的时候直接在 test中例化 ENV 和 scoreboard即可，

有这个后，在 test中直接例化 example_tb即可，也许这个 example_tb主要是用于向上 integrate

的作用吧。

相当于场景 tb1 有 4个 master 4个 slave

tb2 只有一个 master 2个 slave

这些都是你自己去呼叫的

每个场景下 又分不同的 pattern

刚开始调试的时候，只有 master，没有 monitor和 slave 和 scoreboard；

28

由于在 test和 ENV 中间加入了 ubus_example_tb，所以需要修改 test_lib.sv

运行结果为：

29

[1-[1-[1-[1-11111111]]]] 如何顺序的写 UVMUVMUVMUVM平台（8888）----平台总结

[1-[1-[1-[1-12121212]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-18-18-18-1）----top.svtop.svtop.svtop.sv

1. 只需要 include DUT, Interface，ubus_pkg；其他的都在 package 中 include

`include "dut_dummy.v"

`include "ubus_if.sv"

`include "ubus_pkg.sv"

2. 需要 import uvm_pkg，和自定义的 pkg；

import uvm_pkg::*;

import ubus_pkg::*;

虽然在 ubus_pkg中 import了 uvm_pkg，但是在这个地方还必须 import一次，否则会出

现如下错误：

uvm_config_db#(virtual ubus_if)::set(uvm_root::get(),"*","vif",vif);

|

ncvlog: *E,NOPBIND (ubus_tb_top.sv,31|20): Package uvm_config_db could not be bound.

3. 设置接口，run_test

initial begin

uvm_config_db#(virtual ubus_if)::set(uvm_root::get(), "*", "vif", vif);

run_test();

end

4. 设置波形

initial begin

$fsdbDumpfile("test.fsdb");

$fsdbDumpvars(0,ubus_tb_top);

end

30

[1-[1-[1-[1-13131313]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-28-28-28-2）----pkg.svpkg.svpkg.svpkg.sv

5. ，有两个 typedef，本来是想在 get virtual interface中用的，但是也没有用，所以就可以

去掉了，注意的是，这个 include是有顺序的，被调用的一定要放在前面。

package ubus_pkg;

import uvm_pkg::*;

`include "uvm_macros.svh"

//typedef uvm_config_db#(virtual ubus_if) ubus_vif_config;

//typedef virtual ubus_if ubus_vif;

`include "ubus_transfer.sv"

`include "ubus_master_seq_lib.sv"

`include "ubus_master_sequencer.sv"

`include "ubus_master_driver.sv"

`include "ubus_master_monitor.sv"

`include "ubus_master_agent.sv"

`include "ubus_slave_sequencer.sv"

`include "ubus_slave_seq_lib.sv"

`include "ubus_slave_driver.sv"

`include "ubus_slave_monitor.sv"

`include "ubus_slave_agent.sv"

`include "ubus_bus_monitor.sv"

`include "ubus_env.sv"

`include "ubus_example_scoreboard.sv"

`include "ubus_example_tb.sv"

`include "test_lib.sv"

endpackage

[1-[1-[1-[1-14141414]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-38-38-38-3）----test_lib.svtest_lib.svtest_lib.svtest_lib.sv

6. 首先定义一个 base_test，定义各种打印函数；

Uvm_table_printer printer；

在 build_phase中 new printer和设置 print knobs

Printer=new();

Printer.knobs.depth=3;

在 end_of_elaboration_phase中设置打印级别，和打印 test_topology

// Set verbosity for the bus monitor for this demo

if(ubus_example_tb0.ubus0.bus_monitor != null)

31

ubus_example_tb0.ubus0.bus_monitor.set_report_verbosity_level(UVM_FULL);

`uvm_info(get_type_name(),

$sformatf("Printing the test topology :\n%s", this.sprint(printer)), UVM_LOW)

用 uvm_top.print_topology()函数打印效果更好；

7. 在 run_phase中设置 drain_time;

task run_phase(uvm_phase phase);

//set a drain-time for the environment if desired

phase.phase_done.set_drain_time(this, 50);

endtask : run_phase

8. 在 extract phase中查看 test run 完后错误产生吗?

function void extract_phase(uvm_phase phase);

if(ubus_example_tb0.scoreboard0.sbd_error)

test_pass = 1'b0;

endfunction // void

9. 在 report phase中打印 PASSED or FAILED的 message;

function void report_phase(uvm_phase phase);

if(test_pass) begin

`uvm_info(get_type_name(), "** UVM TEST PASSED **", UVM_NONE)

end

else begin

`uvm_error(get_type_name(), "** UVM TEST FAIL **")

end

endfunction

10. 派生具体的 test，设置 master 和 slave 的数量

32

uvm_config_db#(int)::set(this,"ubus_example_tb0.ubus0",

"num_masters", 2);

uvm_config_db#(int)::set(this,"ubus_example_tb0.ubus0",

"num_slaves", 4);

11. 设置 test的 default sequence

// Control the number of RMW loops

uvm_config_db#(int)::set(this,"ubus_example_tb0.ubus0.masters[0].sequencer.loop_read_mo

dify_write_seq", "itr", 6);

uvm_config_db#(int)::set(this,"ubus_example_tb0.ubus0.masters[1].sequencer.loop_read_mo

dify_write_seq", "itr", 8);

// Define the sequences to run in the run phase

uvm_config_db#(uvm_object_wrapper)::set(this,"*.ubus0.masters[0].sequencer.main_phase"

,

"default_sequence",

loop_read_modify_write_seq::type_id::get());

lrmw_seq = loop_read_modify_write_seq::type_id::create();

uvm_config_db#(uvm_sequence_base)::set(this,

"ubus_example_tb0.ubus0.masters[1].sequencer.main_phase",

"default_sequence",

lrmw_seq);

for(int i = 0; i < 4; i++) begin

string slname;

$swrite(slname,"ubus_example_tb0.ubus0.slaves[%0d].sequencer", i);

uvm_config_db#(uvm_object_wrapper)::set(this, {slname,".run_phase"},

"default_sequence",

slave_memory_seq::type_id::get());

end

12. 使用 sequence 机制之后，在不同的 case 中，把不同的 sequence 设置成 sequencer 的

main_phase（一定要是 main_phase 吗？为什么上面设置的是 run_phase 呢？）的

default_sequence，当 sequencer执行到 main_phase时，发现有 default_sequence，那么它

就会把这个 sequence 启动起来。通过在 test_read_byte 中测试，在 main_phase 和在

run_phase中设置 default_sequence都是正确的；

33

[1-[1-[1-[1-15151515]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-48-48-48-4）----transfer.svtransfer.svtransfer.svtransfer.sv

13. Transfer中主要定义一个 driver中所需要的数据类型，都是从 uvm_sequence_item中来，

还需要提供一些基本的约束；自定义枚举类型等；需要注意的是一个 transfer只能对应

一种类型的 driver，比如说有配置寄存器的 APB，还有驱动 DUT 的 master，则需要两

种 transfer，两个 driver；

typedef enum { NOP,

READ,

WRITE

} ubus_read_write_enum;

14. 约束定义

constraint c_read_write {

read_write inside { READ, WRITE };

}

constraint c_size {

size inside {1,2,4,8};

}

constraint c_data_wait_size {

data.size() == size;

wait_state.size() == size;

}

constraint c_transmit_delay {

transmit_delay <= 10 ;

}

15. 工厂模式注册

`uvm_object_utils_begin(ubus_transfer)

`uvm_field_int (addr, UVM_DEFAULT)

`uvm_field_enum (ubus_read_write_enum, read_write, UVM_DEFAULT)

`uvm_field_int (size, UVM_DEFAULT)

`uvm_field_array_int(data, UVM_DEFAULT)

`uvm_field_array_int(wait_state, UVM_DEFAULT)

`uvm_field_int (error_pos, UVM_DEFAULT)

`uvm_field_int (transmit_delay, UVM_DEFAULT)

`uvm_field_string (master, UVM_DEFAULT|UVM_NOCOMPARE)

`uvm_field_string (slave, UVM_DEFAULT|UVM_NOCOMPARE)

`uvm_object_utils_end

34

[1-[1-[1-[1-16161616]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-58-58-58-5）----sequence.svsequence.svsequence.svsequence.sv

16. 定 义 base 的 sequence 都 是 从 uvm_sequence 派 生 而 来 ， 注 意 transfer 是 从

uvm_sequence_item 派生而来，这是由区别的，而 sequence 是依赖 transfer 类型的；另

外我们会将 base_sequence声明成虚基类，只有派生后才可以进行实例化；

virtual class ubus_base_sequence extends uvm_sequence #(ubus_transfer);

17. Sequence是控制平台的启动和关闭，主要是在 task pre_body和 task post_body中控制；

virtual task pre_body();

if (starting_phase!=null) begin

starting_phase.raise_objection(this);

end

endtask

// Drop the objection in the post_body so the objection is removed when

// the root sequence is complete.

virtual task post_body();

if (starting_phase!=null) begin

starting_phase.drop_objection(this);

end

endtask

18. 然后就是通过 base_sequence来产生具体的基本的 sequence；在使用`uvm_do*系列宏的

时候，默认例化的 sequence的名字为 req；这个 req是可以在`uvm_do*之外使用；

`uvm_do_with(req,

{ req.addr == start_addr;

req.read_write == READ;

req.size == 1;

req.error_pos == 1000;

req.transmit_delay == transmit_del; })

19. 接收返回类型，有两种方式，一种是直接采用 UVM提供的 put_response和 get_respone，

另外一种则是在 sequencer中定义一个 port并采用 p_sequencer的方式，先说第一种方

式；

在`uvm_do之后 sequencer中等待接收 rsp，这个 rsp是通过 driver发送过来的；

get_response(rsp);

那么在 driver中会出现如下代码:

seq_item_port.get_next_item(req);

$cast(rsp, req.clone());

rsp.set_id_info(req);

35

drive_transfer(rsp); //具体的 DUT这个地方实现不同

seq_item_port.item_done();

seq_item_port.put_response(rsp);

20. 另外一种方式同 ubus_slave_seq_lib.sv中的那样；

首先一定要在 sequencer中定义一个 TLM port；

class ubus_slave_sequencer extends uvm_sequencer #(ubus_transfer);

uvm_blocking_peek_port#(ubus_transfer) addr_ph_port;

// Provide implementations of virtual methods such as get_type_name and create

`uvm_component_utils(ubus_slave_sequencer)

function new (string name, uvm_component parent);

super.new(name, parent);

addr_ph_port = new("addr_ph_port", this);

endfunction : new

endclass : ubus_slave_sequencer

注意，这个地方要用到 p_sequencer和 m_sequencer的知识，简单的将，m_sequencer指

向的 uvm_sequencer_base 的指针，p_sequencer 指向的是 uvm_sequencer_base 派生对象

ubus_slave_sequencer的指针；所以我们要使用 ubus_slave_sequencer中的 port，就一定要用

p_sequencer才可以。

`uvm_declare_p_sequencer(ubus_slave_sequencer)

ubus_transfer util_transfer;

virtual task body();

$cast(req, create_item(ubus_transfer::get_type(), p_sequencer, "req"));

forever

begin

p_sequencer.addr_ph_port.peek(util_transfer);

starting_phase.raise_objection(this);

start_item(req);

finish_item(req);

starting_phase.drop_objection(this);

end

endtask : body

peek 函数当然是在于 ubus_slave_sequencer 的 component 中实现，本例子中是和

ubus_slave_monitor中通信的，所以 peek函数定义如下：

uvm_blocking_peek_imp#(ubus_transfer,ubus_slave_monitor) addr_ph_imp;

task peek(output ubus_transfer trans);

@address_phase_grabbed;

trans = trans_collected;

36

endtask : peek

当然还需要在 slave_agent中将 port之间进行连接

sequencer.addr_ph_port.connect(monitor.addr_ph_imp);

[1-[1-[1-[1-17171717]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-68-68-68-6）----driver.svdriver.svdriver.svdriver.sv

21. Driver，Monitor，Environment 都需要 get interface；virtual interface 的设置则是在 top

中完成的；

function void build_phase(uvm_phase phase);

if(!uvm_config_db#(virtual ubus_if)::get(this, "", "vif", vif))

`uvm_fatal("NOVIF",{"virtual interface must be set for: ",get_full_name(),".vif"});

endfunction: build_phase

22. 然后就是从 sequencer中接收 sequence，发送到 interface上，还需要对 sequence返回响

应，前面说了，返回响应有两种方式，见 sequence.sv

// run phase

virtual task run_phase(uvm_phase phase);

fork

get_and_drive();

reset_signals();

join

endtask : run_phase

// get_and_drive

virtual protected task get_and_drive();

@(negedge vif.sig_reset);

forever begin

@(posedge vif.sig_clock);

seq_item_port.get_next_item(req);

$cast(rsp, req.clone());

rsp.set_id_info(req);

drive_transfer(rsp);

seq_item_port.item_done();

seq_item_port.put_response(rsp);

end

endtask : get_and_drive

23. 注意，driver 一般也可以和 scoreboard 直接采用 TLM 接口直接通信，将 trans 发送到

scoreboard中进行比较，但是在 ubus中做的比较复杂，用了三个 monitor；

37

[1-[1-[1-[1-18181818]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-78-78-78-7）----Monitor.svMonitor.svMonitor.svMonitor.sv

24. 同 driver一样，monitor的第一件事是 get interface；

function void build_phase(uvm_phase phase);

super.build_phase(phase);

if(!uvm_config_db#(virtual ubus_if)::get(this, "", "vif", vif))

`uvm_fatal("NOVIF",{"virtual interface must be set for: ",get_full_name(),".vif"});

endfunction: build_phase

25. 然后定义一个 TLP接口，用于和 scoreboard进行通信；和进行数据比较

uvm_analysis_port #(ubus_transfer) item_collected_port;

item_collected_port.write(trans_collected);

在 ubus_example_tb.sv中：

ubus0.slaves[0].monitor.item_collected_port.connect(scoreboard0.item_collected_export);

在 scoreboard中实现write函数；在 scoreboard中也有一个memory模型，将 slave_monitor

收到的写操作转化成保存数据或者是数据更新；将 slave_monitor收到的读操作转化成数据

比较操作或者数据更新；而数据的返回操作时有 slave_seq_lib 中的 slave_memory_seq 来完

成的，注意着两个的区别；

// write

virtual function void write(ubus_transfer trans);

if(!disable_scoreboard)

memory_verify(trans);

endfunction : write

26. Monitor的另外一个重要作用就是进行 coverage 的统计；首先要定义各个 cover point；

// Transfer collected covergroup

covergroup cov_trans;

option.per_instance = 1;

trans_start_addr : coverpoint trans_collected.addr {

option.auto_bin_max = 16; }

trans_dir : coverpoint trans_collected.read_write;

trans_size : coverpoint trans_collected.size {

bins sizes[] = {1, 2, 4, 8};

illegal_bins invalid_sizes = default; }

trans_addrXdir : cross trans_start_addr, trans_dir;

trans_dirXsize : cross trans_dir, trans_size;

endgroup : cov_trans

27. 然后就是进行 coverage的计算和报告；

// perform_transfer_coverage

38

protected function void perform_transfer_coverage();

cov_trans.sample();

for (int unsigned i = 0; i < trans_collected.size; i++) begin

addr = trans_collected.addr + i;

data = trans_collected.data[i];

//Wait state inforamtion is not currently monitored.

// wait_state = trans_collected.wait_state[i];

cov_trans_beat.sample();

end

endfunction : perform_transfer_coverage

task peek(output ubus_transfer trans);

@address_phase_grabbed;

trans = trans_collected;

endtask : peek

virtual function void report_phase(uvm_phase phase);

`uvm_info(get_full_name(),$sformatf("Covergroup 'cov_trans' coverage: %2f",

cov_trans.get_inst_coverage()),UVM_LOW)

endfunction

28. Ubus_monitor中还有一个作用，就是进行 slave 的译码设置；具体见前面的 ubus_monitor

部分；

[1-[1-[1-[1-19191919]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-88-88-88-8）----Agent.svAgent.svAgent.svAgent.sv

29. Agent做的事情是最简单的，主要是负责 sequencer，driver，monitor的例化和连接，注

意的是为了向上集成，我们需要判断 UVM_ACTIVE是否有效，因为向上集成的过程中

可能不在需要 sequencer和 driver，而只需要 monitor；

// build_phase

virtual function void build_phase(uvm_phase phase);

super.build_phase(phase);

monitor = ubus_slave_monitor::type_id::create("monitor", this);

if(get_is_active() == UVM_ACTIVE) begin

driver = ubus_slave_driver::type_id::create("driver", this);

sequencer = ubus_slave_sequencer::type_id::create("sequencer", this);

end

endfunction : build_phase

39

// connect_phase

function void connect_phase(uvm_phase phase);

if(get_is_active() == UVM_ACTIVE) begin

driver.seq_item_port.connect(sequencer.seq_item_export);

sequencer.addr_ph_port.connect(monitor.addr_ph_imp);

end

endfunction : connect_phase

[1-[1-[1-[1-20202020]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-98-98-98-9）----Scoreboard.svScoreboard.svScoreboard.svScoreboard.sv

30. Scoreboard主要接收来自 monitor中的数据，并判断是否是正确的，如果是错误的则会

输出一个 error 的指示，在 test_lib 的 base_test 中会用到这个指示，在 base_test 的

report_phase中报告 FAILED，否则报告 PASSED，要接收数据，首先要声明 TLM port；

还要重载 write函数；

uvm_analysis_imp#(ubus_transfer, ubus_example_scoreboard) item_collected_export;

//build_phase

function void build_phase(uvm_phase phase);

item_collected_export = new("item_collected_export", this);

endfunction

// write

virtual function void write(ubus_transfer trans);

if(!disable_scoreboard)

memory_verify(trans);

endfunction : write

31. Write 函数内部一般都是调用比较函数，这个比较函数的写法要具体问题具体分析了；

大多数时候都会用到队列或者 memory 的方式来进行比较；

[1-[1-[1-[1-21212121]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-108-108-108-10）----Env.svEnv.svEnv.svEnv.sv

32. Env主要负责例化 master agent，slave agent，monitor；

void'(uvm_config_db#(int)::get(this, "", "num_masters", num_masters));

masters = new[num_masters];

for(int i = 0; i < num_masters; i++) begin

$sformat(inst_name, "masters[%0d]", i);

40

masters[i] = ubus_master_agent::type_id::create(inst_name, this);

void'(uvm_config_db#(int)::set(this,{inst_name,".monitor"},

"master_id", i));

void'(uvm_config_db#(int)::set(this,{inst_name,".driver"},

"master_id", i));

end

33. 还有会做 coverage 和 check的变量控制，当然在 ubus中还有对 slave 地址空间的配置函

数实现；至于 slave地址空间的配置，后面专门给个总结吧；

// set_slave_address_map

function void set_slave_address_map(string slave_name,

int min_addr, int max_addr);

ubus_slave_monitor tmp_slave_monitor;

if(bus_monitor != null) begin

// Set slave address map for bus monitor

bus_monitor.set_slave_configs(slave_name, min_addr, max_addr);

end

// Set slave address map for slave monitor

$cast(tmp_slave_monitor, lookup({slave_name, ".monitor"}));

tmp_slave_monitor.set_addr_range(min_addr, max_addr);

endfunction : set_slave_address_map

[1-[1-[1-[1-22222222]]]] 如何顺序的写 UVMUVMUVMUVM平台（8-118-118-118-11）----example_tb.svexample_tb.svexample_tb.svexample_tb.sv

34. 我曾经一度怀疑这个文件存在的作用性，因为对我们来说直接在 test中例化 env，然后

就可以了，后来得到一个解释是，有可能需要模拟多个场景，特别是对于总线这种东西

可能需要同时模拟，我用 AXI总线来说明这个问题，比如说我在一个 chip中，用了三

组 AXI总线，分别是 2x4,5x8,3x6，我希望的是在同一个平台中同时模拟着三组总线的

行为，那么 example_tb就很有用了，因为可以直接在 test中例化三个 example_tb即可。

35. Example_tb 主要用来设置 master的数量，slave 的数量，slave 的地址分配，当然也包含

scoreboard和 monitor的连接。

// build_phase

virtual function void build_phase(uvm_phase phase);

super.build_phase(phase);

uvm_config_db#(int)::set(this,"ubus0","num_masters", 1);

uvm_config_db#(int)::set(this,"ubus0","num_slaves", 1);

41

ubus0 = ubus_env::type_id::create("ubus0", this);

scoreboard0 = ubus_example_scoreboard::type_id::create("scoreboard0", this);

endfunction : build_phase

function void connect_phase(uvm_phase phase);

// Connect slave0 monitor to scoreboard

ubus0.slaves[0].monitor.item_collected_port.connect(scoreboard0.item_collected_export);

endfunction : connect_phase

function void end_of_elaboration_phase(uvm_phase phase);

// Set up slave address map for ubus0 (basic default)

ubus0.set_slave_address_map("slaves[0]", 0, 16'hffff);

endfunction : end_of_elaboration_phase

[1-[1-[1-[1-23232323]]]] 如何顺序的写 UVMUVMUVMUVM平台（9999）-RAL-RAL-RAL-RAL

1. 以一个 APB访问寄存器的 dut为例子，由于 APB的 Agent在 UVM中已经提供，我们

只是需要些 regmodel和在 env中例化 regmodel的相关工作等，但是我们首先还是要理

解 APB agent的原理；

2. Callbacks

在 APB 的 driver中在 get trans后和执行读写操作后都存在一个 callback的调用；

typedef class apb_master;

class apb_master_cbs extends uvm_callback;

virtual task trans_received (apb_master xactor , apb_rw cycle);endtask

virtual task trans_executed (apb_master xactor , apb_rw cycle);endtask

endclass

@ (this.sigs.mck);

this.trans_received(tr);

`uvm_do_callbacks(apb_master,apb_master_cbs,trans_received(this,tr))

case (tr.kind)

apb_rw::READ: this.read(tr.addr, tr.data);

apb_rw::WRITE: this.write(tr.addr, tr.data);

endcase

42

this.trans_executed(tr);

`uvm_do_callbacks(apb_master,apb_master_cbs,trans_executed(this,tr))

3. reg2apb_adapter

一个转换器要定义好两个函数：

一个是 reg2bus，作用就是把 register model通过 sequence 发出的 uvm_reg_bus_op 类型

的变量转换成 sequencer能够接受的形式；

另一个是 bus2reg，作用是当监测到总线上有操作时，把收集来的 transaction 转换成

register model能够接受的形式，一遍 register model能够更新相应的寄存器的值。

Register model发起的读操作的数值是如何返回给 register model的？monitor监测到读操

作后，把读操作的数据封装成 trans 的形式发送出去，uvm_reg_predictor 的类会接收这个

transaction，并会调用 adapter bus2reg，把 trans转换成 uvm_reg_bus_op，regsiter model从后

者获取读操作的数值。

uvm_reg_predictor#(apb_rw) apb2reg_predictor;

apb2reg_predictor = new("apb2reg_predictor", this);

reg2apb_adapter reg2apb = new;

regmodel.default_map.set_sequencer(apb.sqr,reg2apb);

apb2reg_predictor.map = regmodel.default_map;

apb2reg_predictor.adapter = reg2apb;

regmodel.default_map.set_auto_predict(0);

43

apb.mon.ap.connect(apb2reg_predictor.bus_in);

4. Regmodel

一般先一个寄存器（extends uvm_reg）定义成一个 class，每个寄存器中可能包含多个

uvm_reg_filed，new 函数中输入的是总线的宽度，build 函数中包含 create和 configure 的调

用；

Configure 参数列表为：parent,有效位宽，从第几 bit开始有效，访问方式，volatile，复

位值，是否复位，是否随即，是否可以单独存取；

5. 对于 UVM_MEM的 extends，只有 new函数，没有 build函数，new函数中会定义长度

与宽度；

6. 将所有的寄存器都组合在一个 uvm_reg_block 中；在 block中首先例化这些寄存器，然

后调用 configure()和 build()函数

44

7. 在 env中例化 uvm_reg_block，例化 apb_agent，例化 uvm_reg_sequence，在 build_phase

中 create regmodel, apb_agent,apb2reg_predictor等；

uvm_reg_sequence seq; 目前还不知道为什么一定要定义这个 sequence？

uvm_reg_predictor#(apb_rw) apb2reg_predictor;

下面是设置 regmodel中所以寄存器的路径前缀；

begin

string hdl_root = "tb_top.dut";

void'($value$plusargs("ROOT_HDL_PATH=%s",hdl_root));

regmodel.set_hdl_path_root(hdl_root);

end

45

virtual function void connect_phase(uvm_phase phase);

if (apb != null) begin

reg2apb_adapter reg2apb = new;

regmodel.default_map.set_sequencer(apb.sqr,reg2apb);

`ifdef EXPLICIT_MON

apb2reg_predictor.map = regmodel.default_map;

apb2reg_predictor.adapter = reg2apb;

regmodel.default_map.set_auto_predict(0);

apb.mon.ap.connect(apb2reg_predictor.bus_in);

`else

regmodel.default_map.set_auto_predict(1);

`endif

end

regmodel.print();

endfunction

46

virtual task run_phase(uvm_phase phase);

phase.raise_objection(this);

if (seq == null) begin

uvm_report_fatal("NO_SEQUENCE","Env's sequence is not defined. Nothing to do.

Exiting.");

return;

end

#100;

uvm_report_info("START_SEQ",{"Starting sequence '",seq.get_name(),"'"});

seq.model = regmodel;

seq.start(null);

phase.drop_objection(this);

endtask

8. 在 test中需要定义一个 sequence赋值给 env中的 sequence；

47

seq = uvm_utils #(uvm_reg_sequence)::create_type_by_name(seq_name,"tb");//不知道这是

个什么意思呢？应该就是创建一个 uvm_reg_sequence

9. 如果 regmodel中的寄存器 create函数没有写全或者写对，会出现下面的错误；

[1-[1-[1-[1-24242424]]]] 如何顺序的写 UVMUVMUVMUVM平台（10101010）----打印信息汇总

1. 在 ubus_base_test中：

`uvm_info(get_type_name(),$sformatf("Printfing the test topology : \n

%s",this.sprint(printer)),UVM_LOW)

48

2. 在 ubus_base_test中：

uvm_report_info(get_full_name(),"start of test run_phase...",UVM_LOW);

uvm_top.print_topology();

3. 在 master_monitor中：

49

`uvm_info({get_full_name()," MASTER ID"},$sformatf(" =

%0d",master_id),UVM_MEDIUM)

UVM_INFO ubus_master_monitor.sv(65) @ 0:

uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor

[uvm_test_top.ubus_example_tb0.ubus0.masters[0].monitor MASTER ID] =0

4. 在 master_sequence_lib中：

if (starting_phase!=null) begin

`uvm_info(get_type_name(), $sformatf("%s pre_body() raising %s objection",

get_sequence_path(), starting_phase.get_name()), UVM_MEDIUM);

UVM_INFO ubus_master_seq_lib.sv(12) @ 0:

uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer@@read_byte_seq [read_byte_seq]

read_byte_seq pre_body raising run objection

5. 在 slave_sequence_lib中：

`uvm_info(get_type_name(), $sformatf("%s starting...",

get_sequence_path()), UVM_MEDIUM);

UVM_INFO ubus_slave_seq_lib.sv(66) @ 0:

uvm_test_top.ubus_example_tb0.ubus0.slaves[0].sequencer@@slave_memory_seq

[slave_memory_seq] slave_memory_seq starting ...

6. 在 master_seq_lib中：

`uvm_info(get_type_name(),$sformatf("%s read : addr = `x%0h, data[0] = `x%0h",

get_sequence_path(), rsp.addr, rsp.data[0]), UVM_HIGH);

UVM_INFO ubus_master_seq_lib.sv(48) @ 300:

uvm_test_top.ubus_example_tb0.ubus0.masters[0].sequencer@@read_byte_seq [read_byte_seq]

read_byte_seq read: addr=`x2c7,data[0]= `x39

[1-[1-[1-[1-25252525]]]] 如何顺序的写 UVMUVMUVMUVM平台（11111111）----疑惑

1. 使用宏的时候中间不要换行；换行的话加 “\”。

2. 在 ubus_slave_seq_lib.sv中；没明白下面的意思；

ubus_slave_sequencer p_sequencer;

$cast(p_sequencer, m_sequencer);

p_sequencer.addr_ph_port.peek(util_transfer);

一般来说我们在 sequencer中都不增加任何变量，但是在 ubus_slave_sequencer中增加了

一个 umv_blocking_peek_port，例化成了 addr_ph_port，这 addr_ph_port是 sequencer用来和

slave_monitor 进行通信的。通信的主要原因是 slave_monitor 收到 transaction 的写操作后需

要发送给 slave_memory_seq中进行保存；所以在 slave_memory_seq 中通过 TLP 接口调用了

slave_monitor中的 peek函数；

50

再 来 看 看 p_sequencer 和 m_sequencer 的 区 别 ： m_sequecer 是 指 向 基 类

uvm_sequencer_base 的指针，而 p_sequencer 是指向从 uvm_sequencer_base 派生出来的

ubus_slave_sequencer的指针；所以如果要用到子对象 ubus_slave_sequencer中的成员变量，

就必须声明一个 p_sequencer指针才能调用；

3. 在 ubus_slave_seq_lib.sv中；没明白下面的意思；

`uvm_declare_p_sequencer(ubus_slave_sequencer)

$cast(req, create_item(ubus_transfer::get_type(), p_sequencer, "req"));

p_sequencer.addr_ph_port.peek(util_transfer);

4. 在 ubus_slave_monitor.sv中；没明白下面的意思；

void'(this.begin_tr(trans_collected));

5. Get_full_name()和 get_type_name()的区别

Get_full_name()：

uvm_test_top.ubus_example_tb0.ubus0.slaves[0].driver

[uvm_test_top.ubus_example_tb0.ubus0.slaves[0].driver]

Get_type_name()：

uvm_test_top.ubus_example_tb0.scoreboard0 [ubus_example_scoreboard]

	基于SV+UVM搭建SOC/ASIC验证平台
	[1-1]　如何顺序的写UVM平台（1）-Basic
	[1-2]　如何顺序的写UVM平台（2）-MasterA
	[1-3]　如何顺序的写UVM平台（3）-Master
	[1-4]　如何顺序的写UVM平台（4-1）-Slave
	[1-5]　如何顺序的写UVM平台（4-2）-Slave
	[1-6]　如何顺序的写UVM平台（4-3）-Slave
	[1-7]　如何顺序的写UVM平台（5-1）-Score
	[1-8]　如何顺序的写UVM平台（5-2）-BusM
	[1-9]　如何顺序的写UVM平台（6）-Sequenc
	[1-10]　如何顺序的写UVM平台（7）-ubus_e
	[1-11]　如何顺序的写UVM平台（8）-平台总结
	[1-12]　如何顺序的写UVM平台（8-1）-top.
	[1-13]　如何顺序的写UVM平台（8-2）-pkg.
	[1-14]　如何顺序的写UVM平台（8-3）-test
	[1-15]　如何顺序的写UVM平台（8-4）-tran
	[1-16]　如何顺序的写UVM平台（8-5）-sequ
	[1-17]　如何顺序的写UVM平台（8-6）-driv
	[1-18]　如何顺序的写UVM平台（8-7）-Moni
	[1-19]　如何顺序的写UVM平台（8-8）-Agen
	[1-20]　如何顺序的写UVM平台（8-9）-Scor
	[1-21]　如何顺序的写UVM平台（8-10）-Env
	[1-22]　如何顺序的写UVM平台（8-11）-exa
	[1-23]　如何顺序的写UVM平台（9）-RAL
	[1-24]　如何顺序的写UVM平台（10）-打印信息汇
	[1-25]　如何顺序的写UVM平台（11）-疑惑

